
 

 

Technical Guideline BSI TR-03183: 
Cyber Resilience Requirements for 
Manufacturers and Products 

Part 2: Software Bill of Materials (SBOM) 

 



Document history 

Page 2 of 37 Federal Office for Information Security 

Document history 

Table 1: Document History 

Version Date Description 

1.0 2023-07-12 Version of BSI TR-03183-2 for first publication 

1.1 2023-11-28 Translate to English; update requirements for creator, version and licence 

information 

2.0.0 2024-09-20 Add some definitions and updates in “Terms used”, “Level of detail”, and 

“Explanations”; add sections “Dependency”, “Express specifications” and “Entry 

into force and transitional system”; add required data fields (actual filename, 

executable property, archive property, structured property); add additional field 

(concluded licences); move source code hash from additional field to optional 

field; add optional field (declared licences); update CycloneDX minimum version 

requirement from 1.4 to 1.5; change SPDX minimum version requirement from 

2.3 to 2.2.1; alter hash value of executable component to hash value of deployable 

component; alter URI of the executable form of the component to URI of the 

deployable form of the component; extend the definition of components 

2.1.0 2025-08-20 Add some definitions and updates in “Terms used”, “Licence information”, “Data 

fields”, and “Explanations”; restructure “Data fields”; update CycloneDX 

minimum version requirement from 1.5 to 1.6, update SPDX minimum version 

requirement from 2.2.1 to 3.0.1; introduce and define logical and identified 

components, clarify usage of BOM references; add section “Mapping of 

individual data fields” 

 

Federal Office for Information Security 

P.O. Box 20 03 63 

53133 Bonn 

E-Mail: TR03183@bsi.bund.de 

Internet: https://bsi.bund.de/dok/TR-03183-en 

© Federal Office for Information Security 2023 - 2025 

https://bsi.bund.de/dok/TR-03183-en


Table of Contents 

Federal Office for Information Security Page 3 of 37 

Table of Contents 

1 Introduction ....................................................................................................................................................................................... 5 

2 Requirements language ................................................................................................................................................................. 6 

3 Basics ..................................................................................................................................................................................................... 7 

3.1 Definition of SBOM .............................................................................................................................................................. 7 

3.2 Terms used ............................................................................................................................................................................... 7 

3.2.1 Component ......................................................................................................................................................................... 7 

3.2.2 Logical component .......................................................................................................................................................... 8 

3.2.3 External component ....................................................................................................................................................... 8 

3.2.4 Identified component (without referencing another BOM) .......................................................................... 9 

3.2.5 Component referenced by another BOM (referenced component) ........................................................... 9 

3.2.6 Executable file .................................................................................................................................................................... 9 

3.2.7 Dependency ........................................................................................................................................................................ 9 

3.2.8 Licence information ........................................................................................................................................................ 9 

3.2.9 Vendor/Supplier vs. creator ....................................................................................................................................... 10 

4 SBOM formats ................................................................................................................................................................................. 11 

5 Content requirements .................................................................................................................................................................. 12 

5.1 Level of detail ........................................................................................................................................................................ 12 

5.2 Data fields ............................................................................................................................................................................... 12 

5.2.1 Required data fields for the SBOM itself .............................................................................................................. 12 

5.2.2 Required data fields for each component ............................................................................................................ 13 

5.2.3 Additional data fields for the SBOM itself ........................................................................................................... 14 

5.2.4 Additional data fields for each component ......................................................................................................... 14 

5.2.5 Optional data fields for each component ............................................................................................................ 15 

6 Express specifications................................................................................................................................................................... 16 

6.1 Licence identifiers and expressions ............................................................................................................................. 16 

7 Transitional system ....................................................................................................................................................................... 17 

8 Appendix ........................................................................................................................................................................................... 18 

8.1 Explanations .......................................................................................................................................................................... 18 

8.1.1 Machine-processable .................................................................................................................................................... 18 

8.1.2 Component ....................................................................................................................................................................... 18 

8.1.3 Logical component ........................................................................................................................................................ 18 

8.1.4 Executable property ...................................................................................................................................................... 18 

8.1.5 Archive property ............................................................................................................................................................ 18 

8.1.6 Structured property ...................................................................................................................................................... 19 

8.1.7 Examples for executable, archive and structured property ......................................................................... 19 

8.1.8 Component creator ....................................................................................................................................................... 19 



1 Introduction 

Page 4 of 37 Federal Office for Information Security 

8.1.9 Component version....................................................................................................................................................... 19 

8.1.10 Relationship between URI, IRI and Punycode .............................................................................................. 20 

8.1.11 Scope of delivery ....................................................................................................................................................... 20 

8.1.12 Path to component ................................................................................................................................................... 20 

8.1.13 Licence information ................................................................................................................................................. 20 

8.1.14 Vulnerability information ..................................................................................................................................... 21 

8.1.15 Digital signature ........................................................................................................................................................ 21 

8.1.16 References to another BOM .................................................................................................................................. 21 

8.2 Mapping of the individual data fields ......................................................................................................................... 21 

8.3 Level of detail of an SBOM .............................................................................................................................................. 33 

8.3.1 Top-level SBOM .............................................................................................................................................................. 33 

8.3.2 n-level SBOM ................................................................................................................................................................... 34 

8.3.3 Transitive SBOM ............................................................................................................................................................. 34 

8.3.4 Delivery item SBOM ..................................................................................................................................................... 35 

8.3.5 Complete SBOM ............................................................................................................................................................. 35 

8.4 SBOM classification ............................................................................................................................................................ 36 

8.4.1 Design SBOM ................................................................................................................................................................... 36 

8.4.2 Source SBOM ................................................................................................................................................................... 36 

8.4.3 Build SBOM ...................................................................................................................................................................... 36 

8.4.4 Analysed SBOM............................................................................................................................................................... 36 

8.4.5 Deployed SBOM .............................................................................................................................................................. 36 

8.4.6 Runtime SBOM ............................................................................................................................................................... 36 

8.5 Further information ........................................................................................................................................................... 37 

8.5.1 Information from the NTIA ....................................................................................................................................... 37 

8.5.2 Information from CISA ............................................................................................................................................... 37 

8.5.3 Information from CycloneDX .................................................................................................................................. 37 

8.5.4 Information from SPDX .............................................................................................................................................. 37 



Introduction 

Page 5 of 37 Federal Office for Information Security 

1 Introduction 

This Technical Guideline describes the requirements for a “Software Bill of Materials (SBOM)”. An SBOM is a 

machine-processable document and corresponds to an electronic bill of materials / parts list. It inventories a 

code base and thus contains information on all components used in a software. This information can be 

presented in different breadth and depths - ranging from a basic structure to a fine-granular breakdown of 

software products and their components. Different formats exist for the representation and distribution of 

an SBOM. 

An SBOM should be used by every software creator and provider in order to be able to transparently 

represent software complexity and to know which components (e.g. libraries) are used. This knowledge is 

essential for software management processes, especially for a continuous IT security process and the 

lifecycle management of software; it is therefore considered “best practice” for a secure software supply 

chain. An SBOM can be public or non-public and can be distributed in different ways. Typically, software 

creators use one or more third-party components. They create and manage the SBOMs of their own 

software; likewise, they take the consumer role of the SBOMs of the included components. The abundance 

of SBOM information and the possible differences in the structure of SBOMs mean a great deal of work for 

each creator. Only automation can effectively address that. 

SBOM information can be used to check whether a product is potentially affected by a vulnerability by 

comparing its component list with the components listed in a vulnerability database. However, an SBOM 

does not contain any statement regarding vulnerabilities or their exploitability. SBOM data for a given 

software version is considered static, while vulnerability information is of dynamic characteristics. Whether 

and to which extent a vulnerability of an integrated component poses a risk to the product covered by the 

SBOM should not be detailed by the SBOM. The exchange of vulnerability information and the potential 

impact should be facilitated, by means of Security Advisories e.g. CSAF1 (Common Security Advisory 

Framework) or VEX2 (Vulnerability Exploitability Exchange). 

In order to confirm whether a product is affected by a vulnerability or not, it is necessary to compare the 

SBOM of the product with vulnerability information, such as the CVE (Common Vulnerabilities and 

Exposures) or Security Advisories of the component manufacturers or providers. Furthermore, an analysis 

of the software itself is necessary to determine how its potentially affected subcomponents are used, and 

thus whether and how one's own software product is affected. This must be carried out as part of the 

vulnerability handling for the product. The result of this analysis is then provided to the users of the 

software as a Security Advisory or VEX for the product. 

Originally, SBOMs were mainly used for license management. This Technical Guideline also specifies this 

use case in an interoperable manner, in order to provide a complete set of requirements for the common 

use cases of SBOMs. 

In the Cyber Resilience Act (CRA)3 the compilation of an SBOM is mandatory. The CRA is a market access 

regulation of the EU for products with digital elements, which obliges their providers to continuously 

operate a vulnerability handling process and to provide information on their products in a transparent and 

comprehensible form. In the US, an SBOM is already required for software acquired by the Federal 

government by the US Executive Order 14028 of May 20214 and the FDA (Food and Drug Administration) 

demands an SBOM to be submitted as part of the approval of new medical devices since March 20235. 

 
1 https://csaf.io/ 
2 https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf 
3 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R2847 
4 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-
the-nations-cybersecurity/ Section 4 
5 https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf Section 3305 

https://csaf.io/
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32024R2847
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf


2 Requirements language 

Page 6 of 37 Federal Office for Information Security 

2 Requirements language 

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, 

“RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be 

interpreted as described in BCP  146 (RFC 21197, RFC  81748) when, and only when, they appear in all capitals, 

as shown here. 

 
6 https://www.rfc-editor.org/info/bcp14 
7 https://www.rfc-editor.org/rfc/rfc2119 
8 https://www.rfc-editor.org/rfc/rfc8174 

https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174


3 Basics 

Federal Office for Information Security Page 7 of 37 

3 Basics 

3.1 Definition of SBOM 

A “Software Bill of Materials” (SBOM) is a machine-processable file containing supply chain relationships 

and details of the components used in a software product. It supports automated processing of information 

on these components. This covers both the so-called “primary component” and used (e.g. external/third-

party) components. 

An SBOM MUST contain certain minimum information (see section 5). It describes any relationship of the 

covered components as detailed in section 5. A component is “fully described” if its record in the SBOM 

contains all applicable data fields specified in section 5.2. An SBOM conformant to this Technical Guideline 

MAY be expanded and detailed as desired as long as this information does not introduce contradictions. 

Note: This requirement allows for providing expanded information while checking conformance to this 

Technical Guideline can still be carried out deterministically. Expanded information not containing the data 

fields as specified in section 5.2 can always be removed from an SBOM without changing the status of 

conformance to this Technical Guideline. Therefore, tools can flag non-conforming information and SBOM 

creators can choose to ignore or fix those errors reported on expanded information. It is often difficult to 

decide in an automated manner which information is expanded information e.g. if context is missing; thus, 

such decisions oblige the SBOM creator. 

A separate SBOM MUST be generated for each software version. An updated version of the SBOM for a 

given software version MUST be generated if and only if additional information on the included 

components is provided or errors in the SBOM data are corrected. Consequently, if any component is 

altered, a new software version MUST be assigned to this component; and in the case of a delivery item 

SBOM also to all depending parent components. 

An SBOM MUST NOT contain vulnerability information, because SBOM data is static with respect to 

software that is not changing. Nonetheless, the formats for describing an SBOM may offer the ability to 

include vulnerability information. Still, a document containing both SBOM and vulnerability information 

does not conform to this Technical Guideline; see also Appendix, section 8.1.14. 

3.2 Terms used 

For explanations of the terms used and examples, see Appendix, section 8.1. 

3.2.1 Component 

A “component” as used in this Technical Guideline is a logical component (see section 3.2.2), a single 

executable file or an archive file, hence they MUST be represented as components in the SBOM. 

Additionally, any other file MAY be represented as a component. Note that an archive can be an executable 

file, too. 

The primary component, i.e. the product itself and the root of the dependency tree from the perspective of 

this SBOM, is also a “component” as used in this Technical Guideline. 

For components that comprise multiple components in a manner that the original components cannot be 

determined the original components SHOULD be listed with the appropriate information according to 

sections 5.2.2, 5.2.4 and 5.2.5. Information that is not available due to the way a component is assembled has 

to be omitted even if it is specified as a required data field, e.g. the hash or filename of the component. 

For the collection of information about components the following principles MUST apply: 



3 Basics 

Page 8 of 37 Federal Office for Information Security 

In the case of compiled code 

The component that was used during the execution of the linker MUST be listed, even if alternative 

components or implementation could have been used. 

If there is – for technical reasons – no linkage run the interpreted code section applies. 

Both statements apply to statically and dynamically linked components / libraries. 

In the case of interpreted code 

The version number of the component MUST reflect the exact required version, if the component is part of 

the delivery item. 

If the component is not part of the delivery item, the version number of the component SHOULD reflect 

the minimum required version as defined by the component creator. This SHOULD also take into account 

other factors than just the factual minimum technical requirement. This implies that the component 

creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum 

required version MAY be determined by the minimum version, which was used for testing, e.g. because it 

was used during software development. 

If multiple implementations of a single dependency exist then the “least common denominator” or the 

standard implementation SHOULD be used. For example: 

• If a script can be run with all Bourne Shell compatible shells the component denoted in the SBOM 

should be the Bourne Shell. 

• If a script can be run with any Python implementation the standard implementation must be used 

(Python) instead of an alternative implementation (Pyston). 

• If a Java program can be run with any Java Runtime Environment (JRE) implementation the Open Source 

Software implementation (OpenJRE) must be used instead of a proprietary implementation. 

3.2.2 Logical component 

A logical component is an abstraction level that combines multiple components, e.g. to identify a product 

by name (as a means of associating a number of files logically to an application; see also Appendix, 

section 8.1.3). 

To fully describe logical components, only the following data fields (see section 5.2) MUST be addressed as 

specified in section 5.1: 

• Component creator 

• Component name 

• Component version 

• Dependencies on other components 

• Distribution licences 

• Other unique identifiers 

• Original licences 

• Effective licence 

• URL of the security.txt 

3.2.3 External component 

An “external component” is a component whose component creator differs from the component creator of 

the primary component. 

The assignment of information to be listed in case of compiled and interpreted code is described as part of 

section 3.2.1. 



3 Basics 

Federal Office for Information Security Page 9 of 37 

3.2.4 Identified component (without referencing another BOM) 

Depending on the level of detail of an SBOM not all components have to be fully described, some merely 

have to be identified, e.g. see Appendix, section 8.3.4. 

For any component that MUST be identified and is not required to be fully described, the following data 

fields (see section 5.2) MUST be addressed as specified in section 5.1: 

• Component creator 

• Component name 

• Component version 

• Other unique identifiers 

3.2.5 Component referenced by another BOM (referenced component) 

For any component (regardless if fully described or merely identified) that is recorded in another BOM and 

is referred to by an SBOM, the following data fields (see section 5.2) MUST be extracted from the component 

description of the referenced component and added in the referencing SBOM in addition to the referred 

BOM: 

• Component creator 

• Component name 

• Component version 

Note: This information is required to identify the referenced component, if the reference cannot be resolved 

or used to access the referenced BOM. 

If inconsistent component information exists in both, the referencing and the referenced BOM, the 

information of the referenced BOM prevails. 

Information beyond the aforementioned data fields (creator, name, version) and the reference to the other 

BOM SHOULD NOT be recorded in the referencing SBOM to avoid inconsistencies, except for additional 

data fields required by an SBOM format specification to generate a valid SBOM in this format. 

3.2.6 Executable file 

An “executable file” as used in this Technical Guideline is any file which comprises code that is executed by 

a computer, either directly or by a runtime system. 

3.2.7 Dependency 

In this Technical Guideline a dependency is a directed requirement from one component to another 

component. This is regardless whether a component is a dependency (as a technical term) or contained in 

the component, e.g. statically linked or embedded. 

3.2.8 Licence information 

This Technical Guideline distinguishes between three categories of licence information: 

• Original licence(s) 

Original licence(s) are all licences that have been assigned by the creator of the component. 

• Distribution licence(s) 

Distribution licence(s) are all licences under which a component recorded in the current SBOM can 

be used by a licensee. 

• Effective licence 

The effective licence is the licence under which the component is used by the licensee that is the 

creator of the current SBOM. 



3 Basics 

Page 10 of 37 Federal Office for Information Security 

The terms “concluded licences” and “declared licences” are not defined and used consistently throughout 

different SBOM standards and implementations. To avoid inconsistencies and confusion and allow for an 

easy mapping this Technical Guideline uses different terms. 

Note: Because the “effective licence” is set by the creator of the current SBOM, it has to be set anew when 

merging SBOMs. However, this process may result in the same “effective licence”. 

3.2.9 Vendor/Supplier vs. creator 

In this Technical Guideline, a distinction is made between “Vendor” and “Creator”, since “Manufacturer” 

may be interpreted as combining these two roles in the sense of “vendor of self-created software” (as the 

German term “Hersteller” is usually interpreted). 

“Vendor” (German: “Anbieter”) describes the role of the entity that provides the software or component. 

Alternatively, but not necessarily with a commercial background the terms “Supplier” (German: “Lieferant”) 

are used. 

“Creator” (German: “Ersteller”) describes the role of the entity that authored or created the software or 

component. Alternatively, the term “Author” (German: “Autor”) is used. 

As the CRA is a market access regulation and this Technical Guideline specifies technical requirements, this 

Technical Guideline uses a different terminology than defined by the CRA. Therefore, this Technical 

Guideline does not mention the terms “Economic Operator”, “Distributor” or “Importer”, as the roles of 

these parties are unrelated to the technical requirements stated here. These technical requirements are 

independent of the role that is fulfilling them. 



4 SBOM formats 

Federal Office for Information Security Page 11 of 37 

4 SBOM formats 

A newly generated or updated SBOM MUST be in JSON- or XML-format and a valid SBOM according to one 

of the following specifications in one of the specified versions: 

• CycloneDX9, version 1.6 or higher 

• System Package Data Exchange (SPDX)10, version 3.0.1 or higher 

Only officially released versions of these specifications MUST be used. 

The transitional system of this Technical Guideline is specified in section 7. 

A mapping of the information model in section 5.1 and section 3.2.5 to the data fields of the aforementioned 

SBOM format specifications is available in Appendix, section 8.2. 

 

 
9 https://cyclonedx.org/specification/overview/ 
10 https://spdx.dev/specifications/ 

https://cyclonedx.org/specification/overview/
https://spdx.dev/specifications/


5 Content requirements 

Page 12 of 37 Federal Office for Information Security 

5 Content requirements 

5.1 Level of detail 

For an SBOM that is compliant with this Technical Guideline, recursive dependency resolution MUST be 

performed at least for each component included in the scope of delivery on each path downward (see 

Appendix, section 8.1.12) at least up to and including the first component that is outside the scope of 

delivery (see Appendix, section 8.1.11; for “delivery item SBOM”, see Appendix, section 8.3.4). 

Note: The first level of dependencies outside the scope of delivery must be identified (for “identified 

component”, see section 3.2.4) in order to correlate these dependencies unambiguously. Without this 

identification, information is missing which is required to correctly chain two SBOMs, e.g. the SBOM of the 

delivery item and the SBOM of the environment in which it is executed. 

If the primary component depends on multiple instances of a component which have different meta-

information, all these instances MUST be listed separately with their individual meta-information. 

SBOMs of used components MAY be referenced instead of being merged into the SBOM of the primary 

component, if and only if they are compliant with this Technical Guideline. The provider of the SBOM of 

the primary component is responsible for the availability of referenced SBOMs. 

To determine the data fields that MUST be recorded in an SBOM the following order applies: 

1. Referenced component (see section 3.2.5) 

2. Identified component (see section 3.2.4) 

3. Fully described component (see section 5.2) 

The component in a referenced SBOM MUST either be a referenced component or provide all data fields 

that are required by the level of detail of the SBOM of the primary component. 

An SBOM compliant with this Technical Guideline MUST contain the same information as available during 

the build process or equivalent information where the build process does not exist (for details related to 

Build SBOM, see Appendix, section 8.4.3). 

Note: For easier identification by humans, the filename of the SBOM itself may reflect the name of its 

primary component. 

5.2 Data fields 

5.2.1 Required data fields for the SBOM itself 

Each SBOM MUST contain at least the following information: 

Table 2: Required data fields for the SBOM itself 

Data field Description 

Creator of the SBOM Email address of the entity that created the SBOM. If no email address is 

available this MUST be a “Uniform Resource Locator (URL)”, e.g. the 

creator’s home page or the project’s web page. 

Timestamp Date and time of the SBOM data compilation according to the specification 

of the formats (see section 4). 

Note: It is recommended to only use timestamps in UTC (“Zulu” time). 

Note: An SBOM format specification may require additional data fields to generate a valid SBOM in this 

format. 

 



5 Content requirements 

Federal Office for Information Security Page 13 of 37 

5.2.2 Required data fields for each component 

For each component included in an SBOM, at least the following information MUST be provided: 

Table 3: Required data fields for each component 

Data field Description 

Component creator Email address of the entity that created and, if applicable, maintains the 

respective component. If no email address is available this MUST be a 

“Uniform Resource Locator (URL)”, e.g. the creator’s home page or the 

project’s web page. 

See also Appendix, section 8.1.8. 

 

Note: If the creator of a component still maintains the component but 

operates under a different name than the one at the time of integrating the 

component, the current name may be used. 

Component name Name assigned to the component by the component creator. If no name is 

assigned this MUST be the actual filename. 

 

Note: If the component name was changed between versions, the 

component name that was valid during the integration of the component 

must be used. 

Component version Identifier used by the creator to specify changes in the component to a 

previously created version. The following points apply to determine a 

version in this order: 

1. Existing identifiers MUST NOT be changed for this purpose. 

2. Identifiers according to Semantic Versioning11 or alternatively 

Calendar Versioning12 SHOULD be used if one determines the 

versioning scheme; this is often the component creator. 

3. If no version is assigned this MUST be the modification date of the 

file expressed as date-time according to RFC 333913 section 5.6. To 

determine the creation time the file metadata MUST be consulted. 

 

See also Appendix, section 8.1.9. 

Filename of the component The actual filename of the component (i.e. not its file system path); see also 

section 3.2.1 

Dependencies on other 

components 

Enumeration of all components on which this component is directly 

dependent, according to requirements in section 5.1, or which this 

component contains according to requirements in section 3.2.1. 

 

Furthermore, the completeness of this enumeration MUST be clearly 

indicated. 

Distribution licences Distribution licence(s) of the component under which it can be used by a 

licensee. For specifics see sections 6.1 and 8.1.13. 

 
11 https://semver.org/ 
12 https://calver.org/ 
13 https://www.rfc-editor.org/rfc/rfc3339 

https://semver.org/
https://calver.org/
https://www.rfc-editor.org/rfc/rfc3339


5 Content requirements 

Page 14 of 37 Federal Office for Information Security 

Data field Description 

Hash value of the deployable 

component 

Cryptographically secure checksum (hash value) of the 

deployed/deployable component (i.e. as a file on a mass storage device) as 

SHA-512; see also section 3.2.1 

Executable property Describes whether the component is executable; possible values are 

“executable” and “non-executable”; see also Appendix, section 8.1.4 

Archive property Describes whether the component is an archive; possible values are 

“archive” and “no archive”; see also Appendix, section 8.1.5 

Structured property Describes whether the component is a structured file, i.e. metadata of the 

contents is still present (see section 3.2.1); possible values are “structured” 

and “unstructured”; see also Appendix, section 8.1.6 

If a component contains both structured and unstructured parts the value 

“structured” MUST be used. 

Note: An SBOM format specification may require additional data fields to generate a valid SBOM in this 

format. 

 

5.2.3 Additional data fields for the SBOM itself 

Each SBOM MUST additionally include the following information, if it exists and fulfils the requirements of 

an SBOM format specification for the specific data field: 

Table 4: Additional data fields for the SBOM itself 

Data field Description 

SBOM-URI “Uniform Resource Identifier (URI)” of this SBOM 

 

5.2.4 Additional data fields for each component 

For each component included in an SBOM, the following information MUST additionally be provided, if it 

exists and fulfils the requirements of an SBOM format specification for the specific data field: 

Table 5: Additional data fields for each component 

Data field Description 

Source code URI “Uniform Resource Identifier (URI)” of the source code of the component, 

e.g. the URL of the utilised source code version in its repository, or if a 

version cannot be specified the utilised source code repository itself. 

URI of the deployable form of 

the component 

“Uniform Resource Identifier (URI)”, which points directly to the 

deployable (e.g. downloadable) form of the component. 

Other unique identifiers Other identifiers that can be used to identify the component or to look it 

up in relevant databases, such as Common Platform Enumeration (CPE) or 

Package URL (purl). 

Original licences The licence(s) that have been assigned by the creator of the component. 

For specifics see sections 6.1 and 8.1.13. 

 



5 Content requirements 

Federal Office for Information Security Page 15 of 37 

5.2.5 Optional data fields for each component 

Each SBOM MAY additionally include the following information, if it exists and fulfils the requirements of 

an SBOM format specification for the specific data field: 

Table 6: Optional data fields for each component 

Data field Description 

Effective licence The licence under which the component is used by the licensee that is the 

creator of the current SBOM. For specifics see sections 6.1 and 8.1.13. 

Hash value of the source code 

of the component 

Cryptographically secure checksum (hash value) of the component source 

code. A specific algorithm how to create a hash value of multiple source 

files or a source code tree, and which hash algorithm is utilised for that has 

not yet been determined. 

URL of the security.txt14 Contains the “Uniform Resource Locator (URL)” of the component 

creator’s security.txt. 

Note: This list is not meant to be exhaustive. 

 
14 https://www.rfc-editor.org/rfc/rfc9116 

https://www.rfc-editor.org/rfc/rfc9116


6 Express specifications 

Page 16 of 37 Federal Office for Information Security 

6 Express specifications 

This section explicitly specifies aspects of section 5 in detail. 

6.1 Licence identifiers and expressions 

Principles of licence identification: 

1. Licences MUST be referred to (in the sense of “named”) by their appropriate SPDX licence identifier or 

licence expression based on such an identifier. This reference is made with so-called “identifiers for 

licences and licence expressions”15. 

While the SPDX and CycloneDX specifications allow for including licence text of components in SBOMs, 

this MUST NOT be used as a substitute for a licence identifier. 

2. Indication of licence identifiers not defined by SPDX 

If an appropriate licence identifier can neither be found in the list maintained by SPDX nor constructed 

by an SPDX licence expression based on a defined licence identifier, the licence database “Scancode 

LicenseDB AboutCode”16 MUST be consulted next. Identifiers from this database use the prefix 

LicenseRef-scancode-[...] in their SPDX licence identifier to indicate their origin. 

3. Licences which cannot be assigned to an extant identifier or licence expression based on an extant 

identifier 

If an appropriate licence identifier cannot be discovered in any of the established identifier lists, the 

prefix LicenseRef-<licence_inventorising_entity>-[...] MUST be used according to “Annex B. SPDX license 

expressions”17 to assign a unique (for each LicenseRef namespace) licence identifier. 

For licence identification the following principles of licence similarity MUST be applied: 

• Licences are similar if they can be mapped to another licence according to “Annex C. License List 

matching guidelines”18. 

• Placeholders and templates in licence texts 

If placeholders and templates exist in licence texts, a replacement of these placeholders and templates 

by individualised content MUST NOT be understood as a licence modification, but MUST be assigned to 

the same licence identifier. 

• SPDX operators and licence concatenations 

Licence expressions of multiple licensing, licence choices and licence exceptions MUST be mapped with 

SPDX operators. The licence operators link licence identifiers. Permitted operators MUST be selected 

according to “Annex B. SPDX license expressions”. 

• Exception clauses for licences 

If an exception clause is attached to a licence text, it MUST be attached to a licence identifier with WITH 

according to the allowed SPDX operators. The names of the exception clause MUST be described with 

identifiers analogous to the requirements on licence identification19. 

• Text modifications 

If a wording in a licence text is slightly modified compared to a licence text of a licence with a known 

licence identifier, this licence identifier SHOULD be used for the modified licence if the modification is 

not substantial. Examples are the addition or removal of liability-clauses or remarks to existing 

trademarks. 

 
15 https://spdx.org/licenses/ 
16 https://scancode-licensedb.aboutcode.org/ 
17 https://spdx.github.io/spdx-spec/v3.0.1/annexes/spdx-license-expressions/ 
18 https://spdx.github.io/spdx-spec/v3.0.1/annexes/license-matching-guidelines-and-templates/ 
19 https://spdx.org/licenses/exceptions-index.html 

https://spdx.org/licenses/
https://scancode-licensedb.aboutcode.org/
https://spdx.github.io/spdx-spec/v3.0.1/annexes/spdx-license-expressions/
https://spdx.github.io/spdx-spec/v3.0.1/annexes/license-matching-guidelines-and-templates/
https://spdx.org/licenses/exceptions-index.html


7 Transitional system 

Federal Office for Information Security Page 17 of 37 

7 Transitional system 

The version with the highest version number of this Technical Guideline available on BSI’s website is called 

the “most recent version”. To be compliant to this Technical Guideline, the most recent version MUST be 

used for the generation of SBOMs. Any previous version MUST NOT be applied, except for the immediately 

preceding version which MAY be applied to generate SBOMs compliant to this Technical Guideline up to six 

months after a new “most recent version” has been issued according to the document history in table 1. 

Unless otherwise defined, an SBOM version compliant to this Technical Guideline at the delivery date of 

this SBOM version remains complaint to the Technical Guideline, even if new versions of this Technical 

Guideline have been published afterwards. Consequently, consumers of SBOMs SHOULD be able to 

interpret SBOM versions that were compliant to this Technical Guideline at the time being delivered. 



8 Appendix 

Page 18 of 37 Federal Office for Information Security 

8 Appendix 

This section provides additional, explanatory information. 

While the sections 3 to 5 set normative requirements for contents, extent and format of a Software Bill of 

Materials (SBOM), this section is intended to provide helpful information on these requirements. This 

includes reasons for certain requirements, further explanation of some of the terms used and examples. 

8.1 Explanations 

This section provides more information on certain terms or definitions in this Technical Guideline. 

8.1.1 Machine-processable 

SBOMs are defined as machine-processable files in this Technical Guideline. This implies that machines can 

create, read, modify, process, analyse and evaluate the content and act based on the data. The content itself 

is well-defined and structured. The term “machine-readable” can be interpreted in multiple ways and is 

therefore not used. 

8.1.2 Component 

In this Technical Guideline a “component” is typically a single executable file20 or an archive file; however, 

also logical components can be used as an abstraction level, which is recommended for linking to other 

SBOMs. 

Notes: 

• An archive can be an executable file, too. 

• The use of the term “file” is necessary in order to unambiguously define which objects this 

Technical Guideline applies to. 

8.1.3 Logical component 

A logical component can be an operating system, application, framework, container, etc., when it is required 

to address a component on an abstract level, e.g. a dependency on an installed operation system (logical 

component) in contrast to its installable image (archive file). 

Another example is that an SBOM for a PHP application inside a container would list without the 

abstraction level just the container itself and each executable PHP file. The information about the original 

PHP application as product is lost. The logical component provides a place to represent that information 

and also allows to reference an extant SBOM of the PHP application. 

8.1.4 Executable property 

Examples for executable files include compiled binaries (“executables”), interpreted code (e.g. Python, Shell, 

Java) and shared libraries. Not covered by the term are, e.g. configuration files, graphic files, documentation. 

Note: This property is important in order to identify files, which may contain malicious code. 

8.1.5 Archive property 

An archive is a combination of multiple components. 

 
20 see also https://en.wikipedia.org/wiki/Executable 

https://en.wikipedia.org/wiki/Executable


8 Appendix 

Federal Office for Information Security Page 19 of 37 

Notes: 

• Compression of an archive does not change this property. 

• This property is important in order to identify files, which may need to be dissected. 

8.1.6 Structured property 

Structured archives contain metadata so that the original components can still be determined afterwards. 

Examples include containers, packages, ISO images, and archives as .zip, .tar, .tar.gz, .7z. 

Unstructured archives do not contain such metadata, i.e. information about their structure is not embedded 

in the file. Examples for unstructured archives include firmware images or other archives that are not 

decomposable into their original components. 

Notes: 

• Binaries containing statically linked libraries are unstructured, executable files, with the exception 

of self-extracting archives which are structured archives while they are executable files and 

potentially contain a statically linked decompression algorithm. 

• This property is important in order to identify files, which can be dissected. 

8.1.7 Examples for executable, archive and structured property 

Table 7: Examples for executable, archive and structured property 

Example Executable Archive Structured Comment 

Configuration file – – – / √ Not required to be listed in an SBOM. 

rpm package – √ √  

Python script √ – –  

Binary with integrated 

SBOM 
√ – √ 

 

Firmware image √ – / √ –  

Self-extracting archive √ √ √  

 

8.1.8 Component creator 

If the source file of a component is cloned, or if the maintainer of a component renames the project, or if the 

contents of the components source code (if applicable) is changed, the maintainer steps into the role of the 

component creator. 

8.1.9 Component version 

In general, it is recommended to use a well-recognised versioning scheme. The aim is to have a 

monotonically strictly increasing sequence of version numbers. While the creator of the component can 

choose the versioning scheme completely arbitrarily, entities further downstream in the supply chain 

should not change it. 



8 Appendix 

Page 20 of 37 Federal Office for Information Security 

8.1.10 Relationship between URI, IRI and Punycode 

Note: If only an Internationalized Resource Identifier (IRI) is available, it has to be transformed into a URI. 

For their fully qualified domain name (FQDN) part, Punycode21 has to be used. 

8.1.11 Scope of delivery 

The scope of delivery of a software product comprises all parts of software, originated by the supplier or a 

third party, that are delivered with the software product. Not included by this term are parts of software that 

have to be acquired or obtained separately. 

8.1.12 Path to component 

A path to a component is defined as tuple of edges that connect nodes which lead to this specific 

component. It starts at the primary component and ends at this specific component. Note, that multiple 

paths to a single component exist if this component is depended upon by multiple, disjunct components. A 

path connects two nodes and may lead across other nodes; hence a path clearly denotes a specific chain of 

nodes. Consequently, if a component has n direct dependencies there are at least n paths across this node, 

each of them across a different direct dependency of this component. For visualisations see section 8.3. 

8.1.13 Licence information 

The required data fields for components include licence information. On the one hand handling licence 

information is a common use case for SBOMs. On the other hand, licence information can be crucial in 

handling vulnerabilities, e.g. if the licence of a component does not allow the user to modify the code to 

mitigate a vulnerability. 

The original licence of an upstream component may differ from its distribution licence assigned by a 

creator of a downstream component utilising the upstream component. An example for this is if the 

primary licensee is forced by the component creator to choose from different sets of licences which are 

mutually exclusive. A classic example is Qt where the primary licensee has to decide between GPL and a 

proprietary licence; only the made choice can be handed further down the supply chain. Hence the 

distribution licences can differ from the original licences. 

The statement in section 5.1 about multiple component instances with different meta-information also 

applies if only the licence information differs. 

In general, the licence fields for both, “declared licenses” and “concluded licenses” should be filled according 

to the utilised format specification (i.e. a specific version of CycloneDX or SPDX). Note that these format 

specifications provide slightly deviating definitions for “declared license(s)” and “concluded license(s)”, 

though both specifications focus on the manner in which this information was obtained to differentiate 

their license fields. BSI TR-03183-2 rather focusses on the licence situation from the perspective of the 

SBOM creator up to the original source (i.e. the “tip” of the supply chain) and from the SBOM creator 

downwards in the supply chain (“downstream licence(s)”), because this is the relevant licence information 

for a recipient of a software (component) to determine their degree of freedom to use, analyse, alter, 

distribute it, and under which licence(s) a software (component) can be obtained from its original source. 

Consequently, this Technical Guideline deliberately specifies different terms and definitions for licence 

information than both format specifications to avoid overloading the terms “declared license” and 

“concluded license” even more with a third definition. The licence information specified by BSI TR-03183-2 

must be mapped to the corresponding format specification as follows, but mind that one should also avoid 

violating the definitions of these fields by the utilised format specification version. 

 
21 https://www.rfc-editor.org/rfc/rfc3492 

https://www.rfc-editor.org/rfc/rfc3492


8 Appendix 

Federal Office for Information Security Page 21 of 37 

8.1.14 Vulnerability information 

The SBOM definition in this Technical Guideline states that vulnerability information is not contained in an 

SBOM. Information on vulnerabilities of a certain version of a software changes over time while the crucial 

information of an SBOM (e.g. on dependencies) is static. If vulnerability information is included in an 

SBOM, this static data is unnecessarily propagated along the software supply chain in unaltered form each 

time the vulnerability information is updated. Consequently, it is required not to include vulnerability 

information in an SBOM, even though an SBOM format specification supports that. The recommended 

format for distributing vulnerability information is CSAF (including also VEX as a profile). 

8.1.15 Digital signature 

Ideally, SBOMs should be digitally signed so recipients can verify their authenticity. 

8.1.16 References to another BOM 

If the creator of an SBOM uses references to an external BOM to reference SBOM information, this creator is 

responsible for the availability of the referenced SBOM information, e.g. by providing an own copy of this 

information. The goal is to provide the SBOM information as if the SBOM creator provided the complete 

information themselves. 

8.2 Mapping of the individual data fields 

The following tables contain mapping of the required information of the data fields specified in section 5 to 

the formats SPDX and CycloneDX. This mapping bears some challenges because the structures of the two 

formats differ. For example, SPDX offers an implicit differentiation between files and packages, whereas 

CycloneDX includes a component type. Both formats lack some of the values required by this Technical 

Guideline. To resolve this issue the respective data fields are represented by BSI’s taxonomy22 as key-value 

pairs. 

Notes: 

• Data fields required by the format specification (SPDX or CycloneDX) or other regulations shall 

remain. Additionally, data fields beyond these requirements and the requirements of this Technical 

Guideline may be included at the SBOM creator’s convenience; this also covers additional instances 

of data fields, e.g. hash values. 

• The “OR” and “XOR” statements in the following tables are directly derived either from “or” or 

“(n)either / (n)or” statements in the normative text in section 5.2 or from the corresponding SBOM 

format specification. For example, in CycloneDX data fields of the primary component are 

described at a different location in the tag hierarchy than other components. 

• The “...” (ellipsis character) in the following tables is a placeholder for the values of the data fields 

which have to be inserted by the SBOM creator. 

• The “example_URI_xx” in the following tables is a placeholder for “spdxId”s to indicate the 

connection between the SPDX elements. These “spdxId”s have to be inserted by the SBOM creator. 

 
22 https://github.com/BSI-Bund/tr-03183-cyclonedx-property-taxonomy 

https://github.com/BSI-Bund/tr-03183-cyclonedx-property-taxonomy


8 Appendix 

Page 22 of 37 Federal Office for Information Security 

Table 8: Mapping of required data fields for the SBOM itself 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Creator of the 

SBOM 

{ 

  "type": "CreationInfo", 

  "createdBy": ["example_URI_01"] 

}, 

{ 

  "type": "Person", 

               XOR 

               "Organization", 

  "spdxId": "example_URI_01", 

  "externalIdentifers": [{ 

    "type": "ExternalIdentifier", 

    "externalIdentifierType": "email", 

    "identifier": "...@..." 

    XOR 

    "type": "ExternalIdentifier", 

    "externalIdentifierType": "urlScheme", 

    "identifier": "https://..." 

  }] 

} 

{ 

  "metadata": { 

    "manufacturer": [{ 

      "url": "..." 

      XOR 

      "contact" [{ 

        "email": "..." 

      }] 

    }] 

  } 

} 

Timestamp { 

  "type": "CreationInfo", 

  "created": "..." 

} 

{ 

  "metadata": { 

    "timestamp": "..." 

  } 

} 

 



8 Appendix 

Federal Office for Information Security Page 23 of 37 

Table 9: Mapping of required data fields for each component 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Component 

creator 

{ 

  "type": "software_Package", 

  "originatedBy": ["example_URI_01"] 

}, 

{ 

  "type": "Person", 

               XOR 

               "Organization", 

  "spdxId": "example_URI_01", 

  "externalIdentifers": [{ 

    "type": "ExternalIdentifier", 

    "externalIdentifierType": "email", 

    "identifier": "...@..." 

    XOR 

    "type": "ExternalIdentifier", 

    "externalIdentifierType": "other", 

    "identifier": "https://..." 

  }] 

} 

{ 

  "metadata" { 

    "component": { 

      "manufacturer": [{ 

        "url": "..." 

        XOR 

        "contact" [{ 

          "email": "..." 

        }] 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "manufacturer": [{ 

      "url": "..." 

      XOR 

      "contact" [{ 

        "email": "..." 

      }] 

    }] 

  }] 

} 

Component 

name 

{ 

  "type": "software_Package", 

  "name": "..." 

} 

{ 

  "metadata" { 

    "component": { 

      "name": "...", 

      "group": "..." 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "name": "...", 

    "group": "..." 

  }] 

} 

Note: Please mind that “group” is not a 

required data field neither by this TR nor 

the CycloneDX specification; though in 

general it appears to be reasonable to 

distinguish between equally named 

components built by different projects. 



8 Appendix 

Page 24 of 37 Federal Office for Information Security 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Component 

version 

{ 

  "type": "software_Package", 

  "software_packageVersion": "..." 

} 

{ 

  "metadata" { 

    "component": { 

      "version": "..." 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "version": "..." 

  }] 

} 

Filename of 

the 

component 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_File", 

  "spdxId": "example_URI_02", 

  "name": "..." 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDistributionArtifact", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

} 

{ 

  "metadata" { 

    "component": { 

      "properties": [{ 

        "name": "bsi:component:filename", 

        "value": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "properties": [{ 

      "name": "bsi:component:filename", 

      "value": "..." 

    }] 

  }] 

} 



8 Appendix 

Federal Office for Information Security Page 25 of 37 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Dependencies 

on other 

components 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "contains", 

                                       XOR 

                                     "dependsOn", 

  "to": [...] 

  "completeness": "complete" 

                                XOR 

                                "incomplete" 

                                XOR 

                                "noAssertion" 

} 

{ 

  "dependencies": [{ 

    "ref": ..., 

    "dependsOn": [...] 

  }] 

}, 

{ 

  "metadata" { 

    "component": { 

      "components": [{...}] 

    } 

  } 

}, 

{ 

  "components": { 

    "components": [{...}] 

  } 

}, 

{ 

  "compositions": [{ 

  "ref": ..., 

  "aggregate": "complete", 

                         XOR 

                         "incomplete", 

                         XOR 

                         "unknown", 

  "assemblies": [...], 

  OR 

  "dependencies": [...] 

}] 

} 

 

Note (see CycloneDX v1.6 specification)23: 

Components without any own 

“dependencies” MUST be declared as empty 

elements within the dependency graph. 

 

Note: “compositions” are only used to 

describe the completeness of “dependencies” 

and “assemblies”. 

 
23 https://cyclonedx.org/docs/1.6/json/#dependencies 

https://cyclonedx.org/docs/1.6/json/#dependencies


8 Appendix 

Page 26 of 37 Federal Office for Information Security 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Distribution 

licences 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasConcludedLicense", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

}, 

{ 

  "type": "simpleLicensing_LicenseExpression", 

  "spdxId": "example_URI_02", 

  "licenseExpression": "..." 

} 

{ 

  "metadata" { 

    "component": { 

      "licenses": [{ 

        "expression": "...", 

        "acknowledgement": "concluded" 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "licenses": [{ 

      "expression": "...", 

      "acknowledgement": "concluded" 

    }] 

  }] 

} 

Hash value of 

the deployable 

component 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_File", 

  "spdxId": "example_URI_02", 

  "verifiedUsing": [{ 

    "type": "Hash", 

    "algorithm": "sha512", 

    "hashValue": "..." 

  }] 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDistributionArtifact", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

} 

{ 

  "metadata" { 

    "component": { 

      "externalReferences": [{ 

        "type": "distribution", 

        "hashes": [{ 

          "alg": "SHA-512", 

          "content": "..." 

        }] 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "externalReferences": [{ 

      "type": "distribution", 

      "hashes": [{ 

        "alg": "SHA-512", 

        "content": "..." 

      }] 

    }] 

  }] 

} 



8 Appendix 

Federal Office for Information Security Page 27 of 37 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Executable 

property 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_File", 

  "spdxId": "example_URI_02", 

  "software_additionalPurpose": ["..."], 

  "comment": "software_additionalPurpose 

field is used to indicate the properties of BSI 

TR-03183-2" 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDistributionArtifact", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

} 

 

Note: Add “executable” to the 

“software_additionalPurpose” list if the 

component is executable; otherwise, do not 

add it. 

{ 

  "metadata" { 

    "component": { 

      "properties": [{ 

        "name": "bsi:component:executable", 

        "value": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "properties": [{ 

      "name": "bsi:component:executable", 

      "value": "..." 

    }] 

  }] 

} 

Archive 

property 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_File", 

  "spdxId": "example_URI_02", 

  "software_additionalPurpose": ["..."], 

  "comment": "software_additionalPurpose 

field is used to indicate the properties of BSI 

TR-03183-2" 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDistributionArtifact", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

} 

 

Note: Add “archive” to the 

“software_additionalPurpose” list if the 

component is an archive; otherwise, do not 

add it. 

{ 

  "metadata" { 

    "component": { 

      "properties": [{ 

        "name": "bsi:component:archive", 

        "value": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "properties": [{ 

      "name": "bsi:component:archive", 

      "value": "..." 

    }] 

  }] 

} 



8 Appendix 

Page 28 of 37 Federal Office for Information Security 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Structured 

property 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_File", 

  "spdxId": "example_URI_02", 

  "software_additionalPurpose": ["..."], 

  "comment": "software_additionalPurpose 

field is used to indicate the properties of BSI 

TR-03183-2" 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDistributionArtifact", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

} 

 

Note: Add “container” to the 

“software_additionalPurpose” list if the 

component is a structured file; otherwise, 

do not add it. 

 

Note: Add “firmware” to the 

“software_additionalPurpose” list if the 

component is not a structured file; 

otherwise, do not add it. 

{ 

  "metadata" { 

    "component": { 

      "properties": [{ 

        "name": "bsi:component:structured", 

        "value": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "properties": [{ 

      "name": "bsi:component:structured", 

      "value": "..." 

    }] 

  }] 

} 

 



8 Appendix 

Federal Office for Information Security Page 29 of 37 

Table 10: Mapping of additional data fields for the SBOM itself 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

SBOM-URI { 

  "type": "SpdxDocument", 

  "rootElement": "..." 

}, 

{ 

  "type": "software_Sbom", 

  "spdxId": "...", 

  "rootElement": "example_URI_01" 

}, 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

} 

 

Note: The “software_Package” with the 

“spdxId” “example_URI_01” refers to the 

primary element of the SBOM. 

{ 

  "serialNumber": "..." 

} 

 

Table 11: Mapping of additional data fields for each component 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Source code 

URI 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_SoftwareArtifact", 

  "spdxId": "example_URI_02", 

  "software_primaryPurpose": "source", 

  "externalRef": [{ 

    "type": "ExternalRef", 

    "externalRefType": "SourceArtifact", 

    "locator": "..." 

  }] 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_02", 

  "relationshipType": "generates", 

  "to": ["example_URI_01"], 

  "completeness": "complete" 

} 

{ 

  "metadata" { 

    "component": { 

      "externalReferences": [{ 

        "type": "source-distribution", 

        "url": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "externalReferences": [{ 

      "type": "source-distribution", 

      "url": "..." 

    }] 

  }] 

} 



8 Appendix 

Page 30 of 37 Federal Office for Information Security 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

URI of the 

deployable 

form of the 

component 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_File", 

  "spdxId": "example_URI_02", 

  "binaryArtifact": "..." 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDistributionArtifact", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

} 

{ 

  "metadata" { 

    "component": { 

      "externalReferences": [{ 

        "type": "distribution", 

        "url": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "externalReferences": [{ 

      "type": "distribution", 

      "url": "..." 

    }] 

  }] 

} 

Other unique 

identifiers 

{ 

  "type": "software_Package" 

  "externalIdentifiers": [{ 

    "externalIdentifierType": "cpe22", 

                                                    OR 

                                                 "cpe23", 

                                                    OR 

                                                 "swid", 

                                                    OR 

                                                 "packageURL", 

    "identifier": "..." 

  }] 

} 

{ 

  "metadata" { 

    "component": { 

      "cpe": "cpe:/..." 

      OR 

      "swid": { 

        "tagId": "..." 

      } 

      OR 

      "purl": "..." 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "cpe": "cpe:/..." 

    OR 

    "swid": { 

      "tagId": "..." 

    } 

    OR 

    "purl": "..." 

  }] 

} 



8 Appendix 

Federal Office for Information Security Page 31 of 37 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Original 

licences 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "hasDeclaredLicense", 

  "to": ["example_URI_02"], 

  "completeness": "complete" 

}, 

{ 

  "type": "simpleLicensing_LicenseExpression", 

  "spdxId": "example_URI_02", 

  "licenseExpression": "..." 

} 

{ 

  "metadata" { 

    "component": { 

      "licenses": [{ 

        "expression": "...", 

        "acknowledgement": "declared" 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "licenses": [{ 

      "expression": "...", 

      "acknowledgement": "declared" 

    }] 

  }] 

} 

 

Table 12: Mapping of optional data fields for each component 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Effective 

licence 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_01", 

  "relationshipType": "other", 

  "to": ["example_URI_02"], 

  "comment": "hasEffectiveLicense", 

  "completeness": "complete" 

}, 

{ 

  "type": "simpleLicensing_LicenseExpression", 

  "spdxId": "example_URI_02", 

  "licenseExpression": "..." 

} 

{ 

  "metadata" { 

    "component": { 

      "properties": [{ 

        "name": 

"bsi:component:effectiveLicense", 

        "value": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "properties": [{ 

      "name": "bsi:component:effectiveLicense", 

      "value": "..." 

    }] 

  }] 

} 



8 Appendix 

Page 32 of 37 Federal Office for Information Security 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

Hash value of 

the source 

code of the 

component 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_SoftwareArtifact", 

  "spdxId": "example_URI_02", 

  "software_primaryPurpose": "source", 

  "verifiedUsing": [{ 

    "type": "Hash", 

    "algorithm": "sha512", 

    "hashValue": "..." 

  }] 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_02", 

  "relationshipType": "generates", 

  "to": ["example_URI_01"], 

  "completeness": "complete" 

} 

{ 

  "metadata" { 

    "component": { 

      "externalReferences": [{ 

        "type": "source-distribution", 

        "hashes": [{ 

          "alg": "SHA-512", 

          "content": "..." 

        }] 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "externalReferences": [{ 

      "type": "source-distribution", 

      "hashes": [{ 

        "alg": "SHA-512", 

        "content": "..." 

      }] 

    }] 

  }] 

} 

URL of the 

security.txt 

{ 

  "type": "software_Package", 

  "externalRef": [{ 

    "type": "ExternalRef", 

    "externalRefType": "securityOther", 

    "locator": "..." 

  }] 

} 

{ 

  "metadata" { 

    "component": { 

      "externalReferences": [{ 

        "type": "rfc-9116", 

        "url": "..." 

      }] 

    } 

  } 

} 

XOR 

{ 

  "components": [{ 

    "externalReferences": [{ 

      "type": "rfc-9116", 

      "url": "..." 

    }] 

  }] 

} 



8 Appendix 

Federal Office for Information Security Page 33 of 37 

Data field SPDX v3.0.1 (JSON) CycloneDX v1.6 (JSON) 

References to 

another BOM 

{ 

  "type": "software_Package", 

  "spdxId": "example_URI_01" 

}, 

{ 

  "type": "software_Sbom", 

  "spdxId": "example_URI_02", 

  "externalRef": [{ 

    "type": "ExternalRef", 

    "externalRefType": "buildMeta", 

    "locator": "..." 

  }] 

}, 

{ 

  "type": "Relationship", 

  "from": "example_URI_02", 

  "relationshipType": "describes", 

  "to": ["example_URI_01"], 

  "completeness": "complete" 

} 

{ 

  "components": [{ 

    "externalReferences": [{ 

      "type": "bom", 

      "url": "..." 

    }] 

  }] 

} 

 

8.3 Level of detail of an SBOM 

Structurally, an SBOM can be created in different levels of detail, e.g. according to the following 

classification. 

8.3.1 Top-level SBOM 

In addition to the full description 

of the primary component, the 

SBOM contains the full 

description of all components, 

which the primary component 

directly depends on. 

 

at least contained in the SBOM

internal / external component

in the scope of delivery / outside 
the scope of delivery

identified / fully described 
componentDI

D

D DD

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 1: Top-level SBOM 



8 Appendix 

Page 34 of 37 Federal Office for Information Security 

8.3.2 n-level SBOM 

In addition to the full description 

of the primary component, the 

SBOM contains the full 

description of all components, 

which are directly or transitively 

depended upon via n levels by the 

primary component. This means 

that the recursive resolution of 

the transitive dependencies is 

limited to n steps in depth. If the 

path from the primary 

component is shorter than n 

levels, all components on this 

path have to be resolved and, 

consequently, fully described. 

A top-level SBOM is a 1-level 

SBOM. 

 

 

8.3.3 Transitive SBOM 

In addition to the full description 

of the primary component, the 

SBOM contains information on at 

least all components, which are 

directly or transitively depended 

upon by the primary component. 

The full description and recursive 

resolution of components and 

their dependencies is performed 

on each path at least up to the 

first external component (i.e. 

third-party component). The first 

external component must at least 

be identified in the SBOM in order 

to correlate this dependency 

unambiguously; consequently, its 

dependencies in turn do not have 

to be resolved. 

Compared to an n-level SBOM including a first external component the transitive SBOM may contain less 

information on this external component, because a transitive SBOM does not need to fully describe external 

components. 

 

I

I

II

D D

DD

D

at least contained in the SBOM

internal / external component

in the scope of delivery / outside 
the scope of delivery

identified / fully described 
componentDI

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

D

D DD

D D D DD

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5
at least contained in the SBOM

internal / external component

in the scope of delivery / outside 
the scope of delivery

identified / fully described 
componentDI

Figure 2: n-level SBOM for n=2 

Figure 3: Transitive SBOM 



8 Appendix 

Federal Office for Information Security Page 35 of 37 

8.3.4 Delivery item SBOM 

In addition to the full description 

of the primary component, the 

SBOM contains the full 

description of at least all 

components, which belong to the 

scope of delivery and are directly 

or transitively depended upon by 

the primary component. The full 

description and recursive 

resolution of components and 

their dependencies is performed 

on each path at least up to the first 

component, which is outside the 

scope of delivery. The first 

component outside the scope of 

delivery must at least be identified 

in the SBOM in order to correlate 

this dependency unambiguously; 

consequently, its dependencies in 

turn do not have to be resolved. 

 

8.3.5 Complete SBOM 

In addition to the full description 

of the primary component, the 

SBOM contains the full 

description of all components, 

which are directly or transitively 

depended upon by the primary 

component. The full description 

and recursive resolution of the 

components and their 

dependencies is carried out 

completely. 

 

  

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

D

D

D D

D

D

D D

D

DD

D

D

D D

D
at least contained in the SBOM

internal / external component

in the scope of delivery / outside 
the scope of delivery

identified / fully described 
componentDI

I

I

D

D D D

D

D

DD

D

DLevel 0

Level 1

Level 2

Level 3

Level 4

Level 5
at least contained in the SBOM

internal / external component

in the scope of delivery / outside 
the scope of delivery

identified / fully described 
componentDI

Figure 4: Delivery item SBOM 

Figure 5: Complete SBOM 



8 Appendix 

Page 36 of 37 Federal Office for Information Security 

8.4 SBOM classification 

Depending on how or when an SBOM is created as part of the development, delivery, installation and 

execution process of a component, the data differs, which is available in that specific situation. 

Consequently, the information that can be compiled in the SBOM also differs. A common differentiation is 

to distinguish between the following SBOM classes. 

8.4.1 Design SBOM 

The SBOM is created based on the planned set of included components of a new software artefact. The 

components do not have to exist yet. 

8.4.2 Source SBOM 

The SBOM is created from the development environment, the source files and the dependencies it uses. 

8.4.3 Build SBOM 

The SBOM is created as part of the build process based on e.g. source files, dependency information, already 

created components, volatile build process data and other SBOMs. 

Notes: 

• In order to enable capturing executable, binary components that already exist (e.g. precompiled code), 

creating a Build SBOM focuses on the linker run for translated code, not the compiler run. 

• In order to let hash values unambiguously identify components, reproducible builds have to be 

employed. 

• In the case of interpreted code, only the source code exists; hence each executable file has to be listed as a 

component. The interpreter has to be specified as a dependency, as far as reasonably possible. 

8.4.4 Analysed SBOM 

The SBOM is created after the build process by analysing artefacts such as executables, packages, containers 

and virtual machine images. This type is also referred to as “3rd party SBOM”. 

8.4.5 Deployed SBOM 

The SBOM provides an inventory of the software on a system. This can be a compilation of other SBOMs, 

taking into account configuration options and examination of execution behaviour in a (possibly simulated) 

deployment environment. 

8.4.6 Runtime SBOM 

The SBOM is created using the system executing the software to capture running (i.e. executing) 

components as well as their external calls and dynamically loaded components at runtime only (i.e. in 

memory). This type may also be referred to as “Dynamic SBOM”. 

  



8 Appendix 

Federal Office for Information Security Page 37 of 37 

8.5 Further information 

8.5.1 Information from the NTIA 

The “National Telecommunications and Information Administration (NTIA)” of the “United States 

Department of Commerce” offers a great deal of further information on the subject of SBOM at 

https://ntia.gov/sbom. 

8.5.2 Information from CISA 

The Cybersecurity and Infrastructure Security Agency (CISA) of the United States Department of Homeland 

Security also offers further information on SBOM at https://cisa.gov/sbom. 

8.5.3 Information from CycloneDX 

CycloneDX also offers guides and resources for beginners at https://cyclonedx.org/guides/. 

8.5.4 Information from SPDX 

SPDX also offers further information on producing and/or consuming SPDX documents and SBOMs at 

https://spdx.dev/learn/overview/. 

 

https://ntia.gov/sbom
https://cisa.gov/sbom
https://cyclonedx.org/guides/
https://spdx.dev/learn/overview/

	1 Introduction
	2 Requirements language
	3 Basics
	3.1 Definition of SBOM
	3.2 Terms used
	3.2.1 Component
	In the case of compiled code
	In the case of interpreted code

	3.2.2 Logical component
	3.2.3 External component
	3.2.4 Identified component (without referencing another BOM)
	3.2.5 Component referenced by another BOM (referenced component)
	3.2.6 Executable file
	3.2.7 Dependency
	3.2.8 Licence information
	3.2.9 Vendor/Supplier vs. creator


	4 SBOM formats
	5 Content requirements
	5.1 Level of detail
	5.2 Data fields
	5.2.1 Required data fields for the SBOM itself
	5.2.2 Required data fields for each component
	5.2.3 Additional data fields for the SBOM itself
	5.2.4 Additional data fields for each component
	5.2.5 Optional data fields for each component


	6 Express specifications
	6.1 Licence identifiers and expressions

	7 Transitional system
	8 Appendix
	8.1 Explanations
	8.1.1 Machine-processable
	8.1.2 Component
	8.1.3 Logical component
	8.1.4 Executable property
	8.1.5 Archive property
	8.1.6 Structured property
	8.1.7 Examples for executable, archive and structured property
	8.1.8 Component creator
	8.1.9 Component version
	8.1.10 Relationship between URI, IRI and Punycode
	8.1.11 Scope of delivery
	8.1.12 Path to component
	8.1.13 Licence information
	8.1.14 Vulnerability information
	8.1.15 Digital signature
	8.1.16 References to another BOM

	8.2 Mapping of the individual data fields
	8.3 Level of detail of an SBOM
	8.3.1 Top-level SBOM
	8.3.2 n-level SBOM
	8.3.3 Transitive SBOM
	8.3.4 Delivery item SBOM
	8.3.5 Complete SBOM

	8.4 SBOM classification
	8.4.1 Design SBOM
	8.4.2 Source SBOM
	8.4.3 Build SBOM
	8.4.4 Analysed SBOM
	8.4.5 Deployed SBOM
	8.4.6 Runtime SBOM

	8.5 Further information
	8.5.1 Information from the NTIA
	8.5.2 Information from CISA
	8.5.3 Information from CycloneDX
	8.5.4 Information from SPDX





