
Technical Guideline TR-03183: Cyber
Resilience Requirements for
Manufacturers and Products

Part 2: Software Bill of Materials (SBOM)

Document history

Page 2 of 20 Federal Office for Information Security

Document history

Table 1: Document History

Version Date Description

1.0 2023-07-12 Version of TR-03183-2 for first publication

1.1 2023-11-28 Translate to English; update requirements for

creator, version and licence information

2.0.0 2024-09-20 Add some definitions and updates in “Terms used”,

“Level of detail”, and “Explanations”; add sections

“Dependency”, “Express specifications” and “Entry

into force and transitional system”; add required

data fields (actual filename, executable property,

archive property, structured property); add

additional field (concluded licences); move source

code hash from additional field to optional field; add

optional field (declared licences); update CycloneDX

minimum version requirement from 1.4 to 1.5; alter

hash value of executable component to hash value of

deployable component; alter URI of the executable

form of the component to URI of the deployable

form of the component; extend the definition of

components

Federal Office for Information Security

P.O. Box 20 03 63

53133 Bonn

E-Mail: TR03183@bsi.bund.de

Internet: https://bsi.bund.de/dok/TR-03183

© Federal Office for Information Security 2023, 2024

https://bsi.bund.de/dok/TR-03183

Table of Contents

Federal Office for Information Security Page 3 of 20

Table of Contents

1 Introduction .. 6

2 Requirements Language .. 8

3 Basics ... 9

3.1 Definition of SBOM .. 9

3.2 Terms used .. 9

3.2.1 Component .. 9

3.2.2 External component ... 10

3.2.3 Executable file .. 10

3.2.4 Dependency... 10

3.2.5 Vendor/Supplier vs. creator .. 10

4 SBOM formats .. 11

5 Content requirements .. 12

5.1 Level of detail ... 12

5.2 Required data fields .. 12

5.2.1 Required data fields for the SBOM itself .. 12

5.2.2 Required data fields for each component ... 12

5.3 Additional data fields ... 13

5.3.1 Additional data fields for the SBOM itself .. 13

5.3.2 Additional data fields for each component .. 13

5.4 Optional data fields ... 14

5.4.1 Optional data fields for each component .. 14

6 Express specifications ... 15

6.1 Licence identifiers and expressions ... 15

7 Transitional system .. 16

8 Annex.. 17

8.1 Explanations ... 17

8.1.1 Machine-processable .. 17

8.1.2 Components .. 17

8.1.3 Executable property .. 17

8.1.4 Archive property ... 17

8.1.5 Structured property ... 17

8.1.6 Component creator ... 17

8.1.7 Scope of delivery ... 18

8.1.8 Path to component .. 18

8.1.9 Licence Information .. 18

8.1.10 Vulnerability information ... 18

1 Introduction

Page 4 of 20 Federal Office for Information Security

8.1.11 Digital Signature .. 18

8.1.12 BOM links .. 18

8.2 Level of detail of an SBOM .. 19

8.2.1 Top-level SBOM .. 19

8.2.2 n-level SBOM .. 19

8.2.3 Transitive SBOM ... 20

8.2.4 Delivery item SBOM .. 20

8.2.5 Complete SBOM .. 21

8.3 SBOM classification .. 21

8.3.1 Design SBOM .. 21

8.3.2 Source SBOM .. 21

8.3.3 Build SBOM ... 21

8.3.4 Analysed SBOM ... 22

8.3.5 Deployed SBOM .. 22

8.3.6 Runtime SBOM .. 22

8.4 Further information ... 22

8.4.1 Information from the NTIA .. 22

8.4.2 Information from CISA ... 22

1 Introduction

Page 5 of 20 Federal Office for Information Security

1 Introduction

This Technical Guideline describes the requirements for a “Software Bill of Materials (SBOM)”. An SBOM is a

machine-processable document and corresponds to an electronic bill of materials / parts list. It inventories a

code base and thus contains information on all components used in a software. This information can be

presented in different breadth and depths - ranging from a basic structure to a fine-granular breakdown of

software products and their components. Different formats exist for the representation and distribution of

an SBOM.

An SBOM should be used by every software creator and provider in order to be able to transparently

represent software complexity and to know which components (e.g. libraries) are used. This knowledge is

essential for software management processes, especially for a continuous IT security process and the

lifecycle management of software; it is therefore considered “best practice” for a secure software supply

chain. An SBOM can be public or non-public and can be distributed in different ways. Typically, software

creators use one or more third-party components. They create and manage the SBOMs of their own

software; likewise, they take the consumer role of the SBOMs of the included components. The abundance

of SBOM information and the possible differences in the structure of SBOMs mean a great deal of work for

each creator. Only automation can effectively address that.

SBOM information can be used to check whether a product is potentially affected by a vulnerability by

comparing its component list with the components listed in a vulnerability database. However, an SBOM

does not contain any statement regarding vulnerabilities or their exploitability. SBOM data for a given

software version is considered static, while vulnerability information is of dynamic characteristics. Whether

and to which extent a vulnerability of an integrated component poses a risk to the product covered by the

SBOM should not be detailed by the SBOM. The exchange of vulnerability information and the potential

impact should be facilitated, by means of Security Advisories e.g. CSAF1 (Common Security Advisory

Framework) or VEX2 (Vulnerability Exploitability Exchange).

In order to confirm whether a product is affected by a vulnerability or not, it is necessary to compare the

SBOM of the product with vulnerability information, such as the CVE (Common Vulnerabilities and

Exposures) or Security Advisories of the component manufacturers or providers. Furthermore, an analysis

of the software itself is necessary to determine how its potentially affected subcomponents are used, and

thus whether and how one's own software product is affected. This must be carried out as part of the

vulnerability management for the product. The result of this analysis is then provided to the users of the

software as a Security Advisory or VEX for the product.

Originally, SBOMs were mainly used for license management. This Technical Guideline also specifies this

use case in an interoperable manner, in order to provide a complete set of requirements for the common

use cases of SBOMs.

In the current draft of the Cyber Resilience Act (CRA)3 the compilation of an SBOM is mandatory. The CRA

is a market access regulation of the EU for products with digital elements, which obliges their providers to

continuously operate a vulnerability management process and to provide information on their products in

a transparent and comprehensible form. In the US, an SBOM is already required for software acquired by

the Federal government by the US Executive Order 14028 of May 20214 and the FDA (Food and Drug

Administration) demands an SBOM to be submitted as part of the approval of new medical devices since

March 20235.

1 https://csaf.io/
2 https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
3 https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2022)454&lang=en
4 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-
the-nations-cybersecurity/ Section 4
5 https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf Section 3305

https://csaf.io/
https://www.ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://ec.europa.eu/transparency/documents-register/detail?ref=COM(2022)454&lang=en
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.congress.gov/117/bills/hr2617/BILLS-117hr2617enr.pdf

2 Requirements Language

Page 6 of 20 Federal Office for Information Security

2 Requirements Language

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,

“RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be

interpreted as described in BCP 146 (RFC 21197, RFC 81748) when, and only when, they appear in all capitals,

as shown here.

6 https://www.rfc-editor.org/info/bcp14
7 https://www.rfc-editor.org/rfc/rfc2119
8 https://www.rfc-editor.org/rfc/rfc8174

https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

3 Basics

Federal Office for Information Security Page 7 of 20

3 Basics

3.1 Definition of SBOM

A “Software Bill of Materials” (SBOM) is a machine-processable file containing supply chain relationships

and details of the components used in a software product. It supports automated processing of information

on these components. This covers both the so-called “primary component” and used (e.g. external/third-

party) components.

An SBOM MUST contain certain minimum information (see section 5), but MAY be expanded and detailed

as desired. It describes any relationship of the covered components as detailed in section 5.

A separate SBOM MUST be generated for each software version. An updated version of the SBOM for a

given software version MUST be generated if and only if additional information on the included

components is provided or errors in the SBOM data are corrected. Consequently, if any component is

altered, a new software version MUST be assigned to this component; and in the case of a delivery item

SBOM also to all depending parent components.

An SBOM MUST NOT contain vulnerability information, because SBOM data is static with respect to

software that is not changing. Nonetheless, the formats for describing an SBOM may offer the ability to

include vulnerability information. Still, a document containing both SBOM and vulnerability information

does not conform to this Technical Guideline; see also section 8.1.10.

3.2 Terms used

3.2.1 Component

A “component” as used in this Technical Guideline is a single executable file or an archive file, hence they

MUST be represented as components in the SBOM. Additionally, any other file MAY be represented as a

component. Note that an archive can be an executable file, too.

The primary component, i.e. the product itself and the root of the dependency tree from the perspective of

this SBOM, is also a "component" as used in this Technical Guideline.

For components that comprise multiple components in a manner that the original components cannot be

determined the original components SHOULD be listed with the appropriate information according to

section 5.2.2 and section 5.3.2. Information that is not available due to the way a component is assembled

has to be omitted even if it is specified as a required field, e.g. the hash or filename of the component.

For explanation of the terms used, see section 8.1.

For the collection of information about components the following principles MUST apply:

In the case of compiled code

The component that was used during the execution of the linker MUST be listed, even if alternative

components or implementation could have been used.

If there is – for technical reasons – no linkage run the interpreted code section applies.

Both statements apply to statically and dynamically linked components / libraries.

In the case of interpreted code

The version number of the component MUST reflect the exact required version, if the component is part of

the delivery item.

3 Basics

Page 8 of 20 Federal Office for Information Security

If the component is not part of the delivery item, the version number of the component SHOULD reflect

the minimum required version as defined by the component creator. This SHOULD also take into account

other factors than just the factual minimum technical requirement. This implies that the component

creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum

required version MAY be determined by the minimum version, which was used for testing, e.g. because it

was used during software development.

If multiple implementations of a single dependency exist then the “least common denominator” or the

standard implementation SHOULD be used. For example:

• If a script can be run with all Bourne Shell compatible shells the component denoted in the SBOM

should be the Bourne Shell.

• If a script can be run with any Python implementation the standard implementation must be used

(Python) instead of an alternative implementation (Pyston).

3.2.2 External component

An “external component” is a component whose component creator differs from the component creator of

the primary component.

The assignment of information to be listed in case of compiled and interpreted code is described as part of

section 3.2.1.

3.2.3 Executable file

An “executable file” as used in this Technical Guideline is any file which comprises code that is executed by

a computer, either directly or by a runtime system.

3.2.4 Dependency

In this Technical Guideline a dependency is a directed requirement from one component to another

component. This is regardless whether a component is a dependency (as a technical term) or contained in

the component, e.g. statically linked or embedded.

3.2.5 Vendor/Supplier vs. creator

In this Technical Guideline, a distinction is made between “Vendor” and “Creator”, since “Manufacturer”

may be interpreted as combining these two roles in the sense of “vendor of self-created software” (as the

German term “Hersteller” is usually interpreted).

“Vendor” (German: “Anbieter”) describes the role of the entity that provides the software or component.

Alternatively, but not necessarily with a commercial background the terms “Supplier” (German: “Lieferant”)

are used.

“Creator” (German: “Ersteller”) describes the role of the entity that authored or created the software or

component. Alternatively, the term “Author” (German: “Autor”) is used.

As the CRA is a market access regulation and this Technical Guideline specifies technical requirements, this

Technical Guideline uses a different terminology than defined by the CRA. Therefore, this Technical

Guideline does not mention the terms “Economic Operator”, “Distributor” or “Importer”, as the roles of

these parties are unrelated to the technical requirements stated here. These technical requirements are

independent of the role that is fulfilling them.

4 SBOM formats

Federal Office for Information Security Page 9 of 20

4 SBOM formats

A newly generated or updated SBOM MUST be in JSON- or XML-format that meets one of the following

specifications in one of the specified versions.

• CycloneDX9, version 1.5 or higher

• Software Package Data eXchange (SPDX)10, version 2.2.1 or higher

The transitional system of this Technical Guideline is specified in section 7.

9 https://cyclonedx.org/specification/overview/
10 https://spdx.dev/specifications/

https://cyclonedx.org/specification/overview/
https://spdx.dev/specifications/

5 Content requirements

Page 10 of 20 Federal Office for Information Security

5 Content requirements

5.1 Level of detail

For an SBOM that is compliant with this Technical Guideline, recursive dependency resolution MUST be

performed at least for each component included in the scope of delivery on each path downward at least up

to and including the first component that is outside the scope of delivery (see Annex, section 8.2.4). If the

primary component depends on multiple instances of a component which have different meta-

information, all these instances MUST be listed separately with their individual meta-information.

SBOMs of used components MAY be linked instead of being merged into the SBOM of the primary

component, if and only if they are compliant with this Technical Guideline.

This SBOM MUST contain the same information as available during the build process or equivalent

information where the build process does not exist (for details related to Build SBOM, see Annex,

section 8.3.3).

5.2 Required data fields

5.2.1 Required data fields for the SBOM itself

Each SBOM MUST contain at least the following information:

Table 2: Required data fields for the SBOM itself

Data field Description

Creator of the SBOM Email address of the entity that created the SBOM. If no email address is

available this MUST be a “Uniform Resource Locator (URL)”, e.g. the

creator’s home page or the project’s web page.

Timestamp Date and time of the SBOM data compilation according to the

specification of the formats (see section 4)

5.2.2 Required data fields for each component

For each component included in an SBOM, at least the following information MUST be provided11:

Table 3: Required data fields for each component

Data field Description

Component creator Email address of the entity that created and, if applicable,

maintains the respective component. If no email address is

available this MUST be a “Uniform Resource Locator (URL)”, e.g.

the creator’s home page or the project’s web page.

Component name Name assigned to the component by its creator. If no name is

assigned this MUST be the actual filename.

11 cf. https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf sections IV and V as

well as
https://www.ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf
section 2.2 and https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_energy_brief_2021.pdf
page 5.

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.gov/sites/default/files/publications/ntia_sbom_framing_2nd_edition_20211021_0.pdf
https://www.ntia.gov/files/ntia/publications/ntia_sbom_formats_energy_brief_2021.pdf

5 Content requirements

Federal Office for Information Security Page 11 of 20

Data field Description

Component version Identifier used by the creator to specify changes in the component

to a previously created version. Identifiers according to Semantic

Versioning12 or alternatively Calendar Versioning13 SHOULD be

used if one determines the versioning scheme. Existing identifiers

MUST NOT be changed for this purpose.

If no version is assigned this MUST be the creation date of the file

expressed as full-date according to RFC 333914 section 5.6. To

determine the creation time the file metadata MUST be consulted.

Filename of the component The actual filename of the component (i.e. not its path); see also

section 3.2.1

Dependencies on other components Enumeration of all components on which this component is

directly dependent, according to requirements in section 5.1, or

which this component contains according to requirements in

section 3.2.1.

Associated licences Associated licence(s) of the component from the perspective of the

SBOM creator. For specifics see sections 6.1 and 8.1.9.

Hash value of the deployable

component

Cryptographically secure checksum (hash value) of the

deployed/deployable component (i.e. as a file on a mass storage

device) as SHA-512; see also section 3.2.1

Executable property Describes whether the component is executable; possible values

are “executable” and “non-executable”; see also section 8.1.3

Archive property Describes whether the component is an archive; possible values are

“archive” and “no archive”; see also section 8.1.4

Structured property Describes whether the component is a structured file, i.e. metadata

of the contents is still present (see section 3.2.1); possible values are

“structured” and “unstructured”; see also section 8.1.5

If a component contains both structured and unstructured parts

the value “structured” MUST be used.

5.3 Additional data fields

5.3.1 Additional data fields for the SBOM itself

Each SBOM MUST additionally include the following information, if it exists and its prerequisites are

fulfilled:

Table 4: Additional data fields for the SBOM itself

Data field Description

SBOM-URI “Uniform Resource Identifier (URI)” of this SBOM

5.3.2 Additional data fields for each component

For each component included in an SBOM, the following information MUST additionally be provided, if it

exists and its prerequisites are fulfilled:

12 https://semver.org/
13 https://calver.org/
14 https://www.rfc-editor.org/rfc/rfc3339

https://semver.org/
https://calver.org/
https://www.rfc-editor.org/rfc/rfc3339

5 Content requirements

Page 12 of 20 Federal Office for Information Security

Table 5: Additional data fields for each component

Data field Description

Source code URI “Uniform Resource Identifier (URI)” of the source code of the component,

e.g. the URL of the utilised source code version in its repository, or if a

version cannot be specified the utilised source code repository itself.

URI of the deployable form of

the component

“Uniform Resource Identifier (URI)”, which points directly to the

deployable (e.g. downloadable) form of the component.

Other unique identifiers Other identifiers that can be used to identify the component or to look it

up in relevant databases, such as Common Platform Enumeration (CPE) or

Package URL (purl).

Concluded licences The licence(s) that the licensee of the component has concluded for this

component. For specifics see sections 6.1 and 8.1.9.

5.4 Optional data fields

5.4.1 Optional data fields for each component

Each SBOM MAY additionally include the following information, if it exists and its prerequisites are

fulfilled:

Table 6: Optional data fields for each component

Data field Description

Declared licences The licence(s) that the licensor of the component has declared for this

component. For specifics see sections 6.1 and 8.1.9.

Hash value of the source code of

the component

Cryptographically secure checksum (hash value) of the component source

code. A specific algorithm how to create a hash value of multiple source

files or a source code tree, and which hash algorithm is utilised for that has

not yet been determined.

Note: This list is not meant to be exhaustive.

6 Express specifications

Federal Office for Information Security Page 13 of 20

6 Express specifications

This section explicitly specifies aspects of section 5 in detail.

6.1 Licence identifiers and expressions

Principles of licence identification:

1. Licences MUST be referred to (in the sense of “named”) by their appropriate SPDX licence identifier or

licence expression based on such an identifier. This reference is made with so-called “identifiers for

licences and licence expressions”15.

2. Indication of licence identifiers not defined by SPDX

If an appropriate licence identifier can neither be found in the list maintained by SPDX or constructed by

an SPDX licence expression based on a defined licence identifier, the licence database “Scancode

LicenseDB AboutCode”16 MUST be consulted next. Identifiers from this database use the prefix

LicenseRef-scancode-[...] in their SPDX licence identifier to indicate their origin.

3. Licences which cannot be assigned to an extant identifier or licence expression based on an extant

identifier

If an appropriate licence identifier cannot be discovered in any of the established identifier lists, the

prefix LicenseRef-<licence_inventorising_entity>-[...] MUST be used according to “Annex D: SPDX License

Expressions”17 to assign a unique (for each LicenseRef namespace) licence identifier.

For license identification the following principles of license similarity MUST be applied:

• Licences are similar if they can be mapped to another licence according to “Annex B: License Matching

Guidelines and Templates”18.

• Placeholders and templates in licence texts

If placeholders and templates exist in licence texts, a replacement of these placeholders and templates by

individualised content MUST NOT be understood as a licence modification, but MUST be assigned to the

same licence identifier.

• SPDX operators and licence concatenations

Licence expressions of multiple licensing, licence choices and licence exceptions MUST be mapped with

SPDX operators. The licence operators link licence identifiers. Permitted operators MUST be selected

according to “Annex D: SPDX License Expressions”.

• Exception clauses for licences

If an exception clause is attached to a licence text, it MUST be attached to a licence identifier with WITH

according to the allowed SPDX operators. The names of the exception clause MUST be described with

identifiers analogous to the requirements on licence identification19.

• Text modifications

If a wording in a licence text is slightly modified compared to a licence text of a licence with a known

licence identifier, this licence identifier SHOULD be used for the modified licence if the modification is

not substantial. Examples are the addition or removal of liability-clauses or remarks to existing

trademarks.

15 https://spdx.org/licenses/
16 https://scancode-licensedb.aboutcode.org/
17 https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/
18 https://spdx.github.io/spdx-spec/v2.3/license-matching-guidelines-and-templates/
19 https://spdx.github.io/spdx-spec/v2.3/SPDX-license-list/#a2-exceptions-list

https://spdx.org/licenses/
https://scancode-licensedb.aboutcode.org/
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/
https://spdx.github.io/spdx-spec/v2.3/license-matching-guidelines-and-templates/
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-list/#a2-exceptions-list

7 Transitional system

Page 14 of 20 Federal Office for Information Security

7 Transitional system

The version with the highest version number of this Technical Guideline available on BSI’s website is called

the “most recent version”. To be compliant to this Technical Guideline, the most recent version MUST be

used for the generation of SBOMs. Any previous version MUST NOT be applied, except for the immediately

preceding version which MAY be applied to generate SBOMs compliant to this Technical Guideline up to six

months after a new "most recent version" has been published.

Unless otherwise defined, an SBOM version compliant to this Technical Guideline at the delivery date of

this SBOM version remains complaint to the Technical Guideline, even if new versions of this Technical

Guideline have been published afterwards. Consequently, consumers of SBOMs SHOULD be able to

interpret SBOM versions that were compliant to this Technical Guideline at the time being delivered.

8 Annex

Federal Office for Information Security Page 15 of 20

8 Annex

This section provides additional, explanatory information.

While the sections 3 to 5 set normative requirements for contents, extent and format of a Software Bill of

Materials (SBOM), this section is intended to provide helpful information on these requirements. This

includes reasons for certain requirements, further explanation of some of the terms used and examples.

8.1 Explanations

This section provides more information on certain terms or definitions in this Technical Guideline.

8.1.1 Machine-processable

SBOMs are defined as machine-processable files in this Technical Guideline. This implies that machines can

create, read, modify, process, analyse and evaluate the content and act based on the data. The content itself

is well-defined and structured. The term “machine-readable” can be interpreted in multiple ways and is

therefore not used.

8.1.2 Components

In this Technical Guideline a “component” must be a single executable file20 or an archive file. Note that an

archive can be an executable file, too. The use of the term “file” is necessary in order to unambiguously

define which objects this Technical Guideline applies to.

8.1.3 Executable property

Examples for executable files include compiled binaries (“executables”), interpreted code (e.g. Python, Shell,

Java) and shared libraries. Not covered by the term are, e.g. configuration files, graphic files, documentation.

8.1.4 Archive property

An archive is a combination of multiple components.

Note: Compression of an archive does not change this property.

8.1.5 Structured property

Structured archives contain metadata so that the original components can still be determined afterwards.

Examples include containers, packages, ISO images, and archives as .zip, .tar, .tar.gz, .7z.

Unstructured archives do not contain such metadata, i.e. information about their structure is not embedded

in the file. Examples for unstructured archives include firmware images or other archives that are not

decomposable into their original components.

Note: Binaries containing statically linked libraries are unstructured, executable files, with the exception of

self-extracting archives which are structured archives while they are executable files and potentially contain

a statically linked decompression algorithm.

8.1.6 Component creator

If the source file of a component is cloned, or if the maintainer of a component renames the project, or if the

contents of the components source code (if applicable) is changed, the maintainer steps into the role of the

component creator.

20 see also https://en.wikipedia.org/wiki/Executable

https://en.wikipedia.org/wiki/Executable

8 Annex

Page 16 of 20 Federal Office for Information Security

8.1.7 Scope of delivery

The scope of delivery of a software product comprises all parts of software, originated by the supplier or a

third party, that are delivered with the software product. Not included by this term are parts of software that

have to be acquired or obtained separately.

8.1.8 Path to component

A path to a component is defined as tuple of edges that connect nodes which lead to this specific

component. It starts at the primary component and ends at this specific component. Note, that multiple

paths to a single component exist if this component is depended upon by multiple, disjunct components. A

path connects two nodes and may lead across other nodes; hence a path clearly denotes a specific chain of

nodes. Consequently, if a component has n direct dependencies there are at least n paths across this node,

each of them across a different direct dependency of this component.

8.1.9 Licence Information

The required fields for every component include licence information. On the one hand handling licence

information is a common use case for SBOMs. On the other hand licence information can be crucial in

handling vulnerabilities, e.g. if the licence of a component does not allow the user to modify the code to

mitigate a vulnerability.

Declared licences are all licences that have been declared by the creator of a component.

A special case is that the primary licensee is forced by the component creator to choose from different sets

of licences which are mutually exclusive. A classic example is Qt where the primary licensee has to decide

between GPL and a proprietary licence; only the made choice can be handed further down the supply chain.

Hence the associated licences can differ from the declared licences.

Associated licences are all licences under which a component can be used by the licensee.

Concluded licences are determined by the licensee that is the component creator of the primary component

of the current SBOM.

The statement about multiple component instances with different meta-information also applies if only the

licence information differs.

8.1.10 Vulnerability information

The SBOM definition in this Technical Guideline states that vulnerability information is not contained in an

SBOM. Information on vulnerabilities of a certain version of a software changes over time while the crucial

information of an SBOM (e.g. on dependencies) is static. If vulnerability information is included in an

SBOM, this static data is unnecessarily propagated along the software supply chain in unaltered form each

time the vulnerability information is updated. Consequently, it is required not to include vulnerability

information in an SBOM, even though an SBOM format specification supports that. The recommended

format for distributing vulnerability information is CSAF (including also VEX as a profile).

8.1.11 Digital Signature

Ideally, SBOMs should be digitally signed so recipients can verify their authenticity.

8.1.12 BOM links

If the creator of an SBOM uses external BOM links to reference SBOM information, this creator is

responsible for the availability of the referenced SBOM information. The goal is to provide the SBOM

information as if the SBOM creator provided the complete information themselves.

8 Annex

Page 17 of 20 Federal Office for Information Security

8.2 Level of detail of an SBOM

Structurally, an SBOM can be created in different levels of detail, e.g. according to the following

classification.

8.2.1 Top-level SBOM

In addition to the full description

of the primary component, the

SBOM contains the full

description of all components,

which the primary component

directly depends on.

8.2.2 n-level SBOM

In addition to the full description

of the primary component, the

SBOM contains the full

description of all components,

which are directly or transitively

depended upon via n levels by the

primary component. This means

that the recursive resolution of the

transitive dependencies is limited

to n steps in depth. If the path

from the primary component is

shorter than n levels, all

components on this path have to

be resolved and, consequently,

fully described.

A top-level SBOM is a 1-level

SBOM.

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 at least contained in the SBOM

internal / external component

in the scope of delivery / outside
the scope of delivery

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 at least contained in the SBOM

internal / external component

in the scope of delivery / outside
the scope of delivery

Figure 1: Top-level SBOM

Figure 2: n-level SBOM for n=2

8 Annex

Page 18 of 20 Federal Office for Information Security

8.2.3 Transitive SBOM

In addition to the full description

of the primary component, the

SBOM contains information on at

least all components, which are

directly or transitively depended

upon by the primary component.

The full description and recursive

resolution of components and

their dependencies is performed

on each path at least up to and

including the first external

component (i.e. third-party

component). This component

must also be fully described in the

SBOM except for the

dependencies of this component.

Consequently, the dependencies

of external components do not

have to be resolved.

Compared to an n-level SBOM including a first external component the transitive SBOM may contain less

information on this external component, because a transitive SBOM does not need to describe the

dependencies of this external component.

8.2.4 Delivery item SBOM

In addition to the full description

of the primary component, the

SBOM contains the full

description of at least all

components, which belong to the

scope of delivery and are directly

or transitively depended upon by

the primary component. The full

description and recursive

resolution of components and

their dependencies is performed

on each path at least up to and

including the first component,

which is outside the scope of

delivery. This component must

also be fully described in the

SBOM except for the

dependencies of this component;

c

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 at least contained in the SBOM

internal / external component

in the scope of delivery / outside
the scope of delivery

onsequently, these dependencies do not have to be resolved.

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 at least contained in the SBOM

internal / external component

in the scope of delivery / outside
the scope of delivery

Figure 3: Transitive SBOM

Figure 4: Delivery item SBOM

8 Annex

Federal Office for Information Security Page 19 of 20

8.2.5 Complete SBOM

In addition to the full description

of the primary component, the

SBOM contains the full

description of all components,

which are directly or transitively

depended upon by the primary

component. The full description

and recursive resolution of the

components and their

dependencies is carried out

completely.

8.3 SBOM classification

Depending on how or when an SBOM is created as part of the development, delivery, installation and

execution process of a component, the data differs, which is available in that specific situation.

Consequently, the information that can be compiled in the SBOM also differs. A common differentiation is

to distinguish between the following SBOM classes.

8.3.1 Design SBOM

The SBOM is created based on the planned set of included components of a new software artefact. The

components do not have to exist yet.

8.3.2 Source SBOM

The SBOM is created from the development environment, the source files and the dependencies it uses.

8.3.3 Build SBOM

The SBOM is created as part of the build process based on e.g. source files, dependency information, already

created components, volatile build process data and other SBOMs.

Notes:

• In order to enable capturing executable, binary components that already exist (i.e. precompiled code),

creating a Build SBOM focuses on the linker run for translated code, not the compiler run.

• In order to let hash values unambiguously identify components, reproducible builds have to be

employed.

• In the case of interpreted code, only the source code exists; each executable file has to be listed as a

component. The interpreter has to be specified as a dependency, as far as reasonably possible.

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5 at least contained in the SBOM

internal / external component

in the scope of delivery / outside
the scope of delivery

Figure 5: Complete SBOM

8 Annex

Page 20 of 20 Federal Office for Information Security

8.3.4 Analysed SBOM

The SBOM is created after the build process by analysing artefacts such as executables, packages, containers

and virtual machine images. This type is also referred to as “3rd party SBOM”.

8.3.5 Deployed SBOM

The SBOM provides an inventory of the software on a system. This can be a compilation of other SBOMs,

taking into account configuration options and examination of execution behaviour in a (possibly simulated)

deployment environment.

8.3.6 Runtime SBOM

The SBOM is created using the system executing the software to capture running (i.e. executing)

components as well as their external calls and dynamically loaded components at runtime only (i.e. in

memory). This type may also be referred to as “Dynamic SBOM”.

8.4 Further information

8.4.1 Information from the NTIA

The “National Telecommunications and Information Administration (NTIA)” of the “United States

Department of Commerce” offers a great deal of further information on the subject of SBOM at

https://ntia.gov/sbom.

8.4.2 Information from CISA

The Cybersecurity and Infrastructure Security Agency (CISA) of the United States Department of Homeland

Security also offers further information on SBOM at https://cisa.gov/sbom.

https://ntia.gov/sbom
https://cisa.gov/sbom

	Technical Guideline TR-03183: Cyber Resilience Requirements for Manufacturers and Products
	Technical Guideline TR-03183: Cyber Resilience Requirements for Manufacturers and Products
	Technical Guideline TR-03183: Cyber Resilience Requirements for Manufacturers and Products
	Part 2: Software Bill of Materials (SBOM)

	Table 1: Document History
	Document history
	Document history
	Document history
	Document history
	Table 1: Document History
	Translate to English; update requirements for creator, version and licence information

	Document history
	Document history
	Table 1: Document History
	© Federal Office for Information Security 2023, 2024

	Document history
	Description

	Document history
	Document history
	2023-07-12
	Document history
	Version
	2023-07-12

	1
	Table of Contents
	Table of Contents
	Table of Contents
	Table of Contents
	1
	6

	Table of Contents
	Table of Contents
	1

	External
	3 Basics ... 9

	Table of Contents
	

	Table of Contents
	Table of Contents

	Table of Contents
	

	
	8.1.11
	8.1.11
	8.1.11
	8.1.11
	
	8.1.12

	8.1.11
	8.1.11
	
	

	Level of detail of an SBOM

	8.1.11

	8.1.11
	8.1.11

	8.1.11
	Digital Signature

	This Technical Guideline describes the requirements for a “Software Bill of Materials (SBOM)”. An SBOM is a machine-processable document and corresponds to an electronic bill of materials / parts list. It inventories a code base and thus contains information on all components used in a software. This information can be presented in different breadth and depths - ranging from a basic structure to a fine-granular breakdown of software products and their components. Different formats exist for the representation and distribution of an SBOM.
	1 Introduction
	1 Introduction
	1 Introduction
	1 Introduction
	This Technical Guideline describes the requirements for a “Software Bill of Materials (SBOM)”. An SBOM is a machine-processable document and corresponds to an electronic bill of materials / parts list. It inventories a code base and thus contains information on all components used in a software. This information can be presented in different breadth and depths - ranging from a basic structure to a fine-granular breakdown of software products and their components. Different formats exist for the representation and distribution of an SBOM.
	ntinuously operate a vulnerability management process and to provide information on their products in

	1 Introduction
	1 Introduction
	This Technical Guideline describes the requirements for a “Software Bill of Materials (SBOM)”. An SBOM is a machine-processable document and corresponds to an electronic bill of materials / parts list. It inventories a code base and thus contains information on all components used in a software. This information can be presented in different breadth and depths - ranging from a basic structure to a fine-granular breakdown of software products and their components. Different formats exist for the representation and distribution of an SBOM.
	the compilation of an SBOM is mandatory. The CRA
	2

	1 Introduction
	In order to confirm whether a product is affected by a vulnerability or not, it is necessary to compare the SBOM of the product with vulnerability information, such as the CVE (Common Vulnerabilities and Exposures) or Security Advisories of the component manufacturers or providers. Furthermore, an analysis of the software itself is necessary to determine how its potentially affected subcomponents are used, and thus whether and how one's own software product is affected. This must be carried out as part of the vulnerability management for the product. The result of this analysis is then provided to the users of the software as a Security Advisory or VEX for the product.

	1 Introduction
	1 Introduction
	3
	1 Introduction
	An SBOM should be used by every software creator and provider in order to be able to transparently represent software complexity and to know which components (e.g. libraries) are used. This knowledge is essential for software management processes, especially for a continuous IT security process and the lifecycle management of software; it is therefore considered “best practice” for a secure software supply chain. An SBOM can be public or non-public and can be distributed in different ways. Typically, software creators use one or more third-party components. They create and manage the SBOMs of their own software; likewise, they take the consumer role of the SBOMs of the included components. The abundance of SBOM information and the possible differences in the structure of SBOMs mean a great deal of work for each creator. Only automation can effectively address that.
	3

	The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in BCP 146 (RFC 2119
	2 Requirements Language
	2 Requirements Language
	2 Requirements Language
	2 Requirements Language
	The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in BCP 146 (RFC 2119
	https://www.rfc-editor.org/info/bcp14

	2 Requirements Language
	2 Requirements Language
	The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in BCP 146 (RFC 2119
	as shown here.

	2 Requirements Language
	

	2 Requirements Language
	2 Requirements Language
	8
	2 Requirements Language
	7
	8

	3.1 Definition of SBOM
	3 Basics
	3 Basics
	3 Basics
	3 Basics
	3.1 Definition of SBOM
	3.2 Terms used

	3 Basics
	3 Basics
	3.1 Definition of SBOM
	An SBOM MUST NOT contain vulnerability information, because SBOM data is static with respect to software that is not changing. Nonetheless, the formats for describing an SBOM may offer the ability to include vulnerability information. Still, a document containing both SBOM and vulnerability information does not conform to this Technical Guideline; see also section
	If there is – for technical reasons – no linkage run the interpreted code section applies.

	3 Basics
	5

	3 Basics
	3 Basics
	.
	3 Basics
	A “Software Bill of Materials” (SBOM) is a machine-processable file containing supply chain relationships and details of the components used in a software product. It supports automated processing of information on these components. This covers both the so-called “primary component” and used (e.g. external/third-party) components.
	.

	If multiple implementations of a single dependency exist then the “least common denominator” or the standard implementation SHOULD be used. For example:
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If multiple implementations of a single dependency exist then the “least common denominator” or the standard implementation SHOULD be used. For example:
	In this Technical Guideline a dependency is a directed requirement from one component to another component. This is regardless whether a component is a dependency (as a technical term) or contained in the component, e.g. statically linked or embedded.

	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If multiple implementations of a single dependency exist then the “least common denominator” or the standard implementation SHOULD be used. For example:
	3.2.3 Executable file

	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	3.2.2 External component

	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	3.2.1
	If the component is not part of the delivery item, the version number of the component SHOULD reflect the minimum required version as defined by the component creator. This SHOULD also take into account other factors than just the factual minimum technical requirement. This implies that the component creator SHOULD skip versions that are end-of-life or have known security vulnerabilities. The minimum required version MAY be determined by the minimum version, which was used for testing, e.g. because it was used during software development.
	• If a script can be run with all Bourne Shell compatible shells the component denoted in the SBOM should be the Bourne Shell.
	3.2.1

	A newly generated or updated SBOM MUST be in JSON- or XML-format that meets one of the following specifications in one of the specified versions.
	4 SBOM formats
	4 SBOM formats
	4 SBOM formats
	4 SBOM formats
	A newly generated or updated SBOM MUST be in JSON- or XML-format that meets one of the following specifications in one of the specified versions.

	4 SBOM formats
	4 SBOM formats
	A newly generated or updated SBOM MUST be in JSON- or XML-format that meets one of the following specifications in one of the specified versions.

	4 SBOM formats
	The transitional system of this Technical Guideline is specified in section

	4 SBOM formats
	4 SBOM formats
	9
	4 SBOM formats
	• CycloneDX9, version 1.5 or higher
	9

	5.1 Level of detail
	5 Content requirements
	5 Content requirements
	5 Content requirements
	5 Content requirements
	5.1 Level of detail
	Table 2: Required data fields for the SBOM itself

	5 Content requirements
	5 Content requirements
	5.1 Level of detail
	5.2 Required data fields
	4

	5 Content requirements
). If the primary component depends on multiple instances of a component which have different meta-information, all these instances MUST be listed separately with their individual meta-information.

	5 Content requirements
	5 Content requirements
	8.3.3
	5 Content requirements
	For an SBOM that is compliant with this Technical Guideline, recursive dependency resolution MUST be performed at least for each component included in the scope of delivery on each path downward at least up to and including the first component that is outside the scope of delivery (see Annex, section
	8.3.3

	If no version is assigned this MUST be the creation date of the file expressed as full-date according to RFC 333914 section 5.6. To determine the creation time the file metadata MUST be consulted.
	5.3 Additional data fields
	Associated licence(s) of the component from the perspective of the SBOM creator. For specifics see sections
	
	Description
	Data
	Description
	Table 5: Additional data fields for each component
	Table 5: Additional data fields for each component
	Table 5: Additional data fields for each component
	Table 5: Additional data fields for each component
	Table 5: Additional data fields for each component
	Table 5: Additional data fields for each component
	5.4 Optional data fields

	Table 5: Additional data fields for each component
	

	Table 5: Additional data fields for each component
	Table 5: Additional data fields for each component
	Description
	Table 5: Additional data fields for each component
	Description

	This section explicitly specifies aspects of section
	6 Express specifications
	6 Express specifications
	6 Express specifications
	6 Express specifications
	This section explicitly specifies aspects of section
	

	6 Express specifications
	6 Express specifications
	This section explicitly specifies aspects of section
	
	17
	origin.

	6 Express specifications
	6.1 Licence identifiers and expressions

	6 Express specifications
	6 Express specifications
	15
	6 Express specifications
	5
	15

	The version with the highest version number of this Technical Guideline available on BSI’s website is called the “most recent version”. To be compliant to this Technical Guideline, the most recent version MUST be used for the generation of SBOMs. Any previous version MUST NOT be applied, except for the immediately preceding version which MAY be applied to generate SBOMs compliant to this Technical Guideline up to six months after a new "most recent version" has been published.
	7 Transitional system
	7 Transitional system
	7 Transitional system
	7 Transitional system
	The version with the highest version number of this Technical Guideline available on BSI’s website is called the “most recent version”. To be compliant to this Technical Guideline, the most recent version MUST be used for the generation of SBOMs. Any previous version MUST NOT be applied, except for the immediately preceding version which MAY be applied to generate SBOMs compliant to this Technical Guideline up to six months after a new "most recent version" has been published.

	7 Transitional system
	7 Transitional system
	The version with the highest version number of this Technical Guideline available on BSI’s website is called the “most recent version”. To be compliant to this Technical Guideline, the most recent version MUST be used for the generation of SBOMs. Any previous version MUST NOT be applied, except for the immediately preceding version which MAY be applied to generate SBOMs compliant to this Technical Guideline up to six months after a new "most recent version" has been published.

	7 Transitional system
	7 Transitional system
	7 Transitional system
	7 Transitional system
	Unless otherwise defined, an SBOM version compliant to this Technical Guideline at the delivery date of this SBOM version remains complaint to the Technical Guideline, even if new versions of this Technical Guideline have been published afterwards. Consequently, consumers of SBOMs SHOULD be able to interpret SBOM versions that were compliant to this Technical Guideline at the time being delivered.

	This section provides additional, explanatory information.
	8 Annex
	8 Annex
	8 Annex
	8 Annex
	This section provides additional, explanatory information.
	In this Technical Guideline a “component” must be a single executable file

	8 Annex
	8 Annex
	This section provides additional, explanatory information.
	8.1.1 Machine-processable
	8.1.4 Archive property

	8 Annex
	 to

	8 Annex
	8 Annex
	8.1 Explanations
	8 Annex
	While the sections
	8.1 Explanations

	The scope of delivery of a software product comprises all parts of software, originated by the supplier or a third party, that are delivered with the software product. Not included by this term are parts of software that have to be acquired or obtained separately.
	8.1.7 Scope of delivery
	8.1.7 Scope of delivery
	8.1.7 Scope of delivery
	8.1.7 Scope of delivery
	The scope of delivery of a software product comprises all parts of software, originated by the supplier or a third party, that are delivered with the software product. Not included by this term are parts of software that have to be acquired or obtained separately.
	A special case is that the primary licensee is forced by the component creator to choose from different sets of licences which are mutually exclusive. A classic example is Qt where the primary licensee has to decide between GPL and a proprietary licence; only the made choice can be handed further down the supply chain. Hence the associated licences can differ from the declared licences.

	8.1.7 Scope of delivery
	8.1.7 Scope of delivery
	The scope of delivery of a software product comprises all parts of software, originated by the supplier or a third party, that are delivered with the software product. Not included by this term are parts of software that have to be acquired or obtained separately.
	

	8.1.7 Scope of delivery
	8.1.9 Licence Information

	8.1.7 Scope of delivery
	8.1.7 Scope of delivery
	The required fields for every component include licence information. On the one hand handling licence information is a common use case for SBOMs. On the other hand licence information can be crucial in handling vulnerabilities, e.g. if the licence of a component does not allow the user to modify the code to mitigate a vulnerability.
	8.1.7 Scope of delivery
	8.1.8 Path to component
	The required fields for every component include licence information. On the one hand handling licence information is a common use case for SBOMs. On the other hand licence information can be crucial in handling vulnerabilities, e.g. if the licence of a component does not allow the user to modify the code to mitigate a vulnerability.

	Structurally, an SBOM can be created in different levels of detail, e.g. according to the following classification.
	8.2 Level of detail of an SBOM
	8.2 Level of detail of an SBOM
	8.2 Level of detail of an SBOM
	8.2 Level of detail of an SBOM
	Structurally, an SBOM can be created in different levels of detail, e.g. according to the following classification.

	8.2 Level of detail of an SBOM
	8.2 Level of detail of an SBOM
	Structurally, an SBOM can be created in different levels of detail, e.g. according to the following classification.

	8.2 Level of detail of an SBOM
	8.2.2 n-level SBOM

	8.2 Level of detail of an SBOM
	8.2 Level of detail of an SBOM
	
	8.2 Level of detail of an SBOM
	8.2.1 Top-level SBOM
	

	M
	8.2.3 Transitive SBO
	8.2.3 Transitive SBO
	8.2.3 Transitive SBO
	8.2.3 Transitive SBO
	M
	Figure 3: Transitive SBOM

	8.2.3 Transitive SBO
	8.2.3 Transitive SBO
	M

	8.2.3 Transitive SBO
	Compared to an n-level SBOM including a first external component the transitive SBOM may contain less information on this external component, because a transitive SBOM does not need to describe the dependencies of this external component.

	8.2.3 Transitive SBO
	8.2.3 Transitive SBO
	In addition to the full description of the primary component, the SBOM contains the full description of at least all components, which belong to the scope of delivery and are directly or transitively depended upon by the primary component. The full description and recursive resolution of components and their dependencies is performed on each path at least up to and including the first component, which is outside the scope of delivery. This component must also be fully described in the SBOM except for the dependencies of this component; c
	8.2.3 Transitive SBO
	
	In addition to the full description of the primary component, the SBOM contains the full description of at least all components, which belong to the scope of delivery and are directly or transitively depended upon by the primary component. The full description and recursive resolution of components and their dependencies is performed on each path at least up to and including the first component, which is outside the scope of delivery. This component must also be fully described in the SBOM except for the dependencies of this component; c

	In addition to the full description of the primary component, the SBOM contains the full description of all components, which are directly or transitively depended upon by the primary component. The full description and recursive resolution of the components and their dependencies is carried out completely.
	8.2.5 Complete SBOM
	8.2.5 Complete SBOM
	8.2.5 Complete SBOM
	8.2.5 Complete SBOM
	In addition to the full description of the primary component, the SBOM contains the full description of all components, which are directly or transitively depended upon by the primary component. The full description and recursive resolution of the components and their dependencies is carried out completely.
	• In order to let hash values unambiguously identify components, reproducible builds have to be employed.

	8.2.5 Complete SBOM
	8.2.5 Complete SBOM
	In addition to the full description of the primary component, the SBOM contains the full description of all components, which are directly or transitively depended upon by the primary component. The full description and recursive resolution of the components and their dependencies is carried out completely.
	The SBOM is created as part of the build process based on e.g. source files, dependency information, already created components, volatile build process data and other SBOMs.

	8.2.5 Complete SBOM
	8.3.1 Design SBOM

	8.2.5 Complete SBOM
	8.2.5 Complete SBOM
	The SBOM is created from the development environment, the source files and the dependencies it uses.
	8.2.5 Complete SBOM
	8.3 SBOM classification
	The SBOM is created from the development environment, the source files and the dependencies it uses.

	The SBOM is created after the build process by analysing artefacts such as executables, packages, containers and virtual machine images. This type is also referred to as “3rd party SBOM”.
	8.3.4 Analysed SBOM
	8.3.4 Analysed SBOM
	8.3.4 Analysed SBOM
	8.3.4 Analysed SBOM
	The SBOM is created after the build process by analysing artefacts such as executables, packages, containers and virtual machine images. This type is also referred to as “3rd party SBOM”.
	8.4.2 Information from CISA

	8.3.4 Analysed SBOM
	8.3.4 Analysed SBOM
	The SBOM is created after the build process by analysing artefacts such as executables, packages, containers and virtual machine images. This type is also referred to as “3rd party SBOM”.
	The “National Telecommunications and Information Administration (NTIA)” of the “United States Department of Commerce” offers a great deal of further information on the subject of SBOM at

	8.3.4 Analysed SBOM
	8.3.6 Runtime SBOM

	8.3.4 Analysed SBOM
	8.3.4 Analysed SBOM
	8.4 Further information
	8.3.4 Analysed SBOM
	8.3.5 Deployed SBOM
	8.4 Further information

